The dual Euler basis: Constraints, potentials, and Lagrange's equations in rigid-body dynamics

被引:14
作者
O'Reilly, Oliver M. [1 ]
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
来源
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME | 2007年 / 74卷 / 02期
关键词
D O I
10.1115/1.2190231
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Given a specific set of Euler angles, it is common to ask what representations conservative moments and constraint moments possess. In this paper we discuss the role that a non-orthogonal basis, which we call the dual Euler basis, plays in the representations. The use of the basis is illustrated with applications to potential energies, constraints, and Lagrange's equations of motion.
引用
收藏
页码:256 / 258
页数:3
相关论文
共 8 条
[1]   ANGULAR VELOCITY AND MOMENT POTENTIAL FOR A RIGHT BODY - (SIMMONDS) [J].
ANTMAN, SS .
SIAM REVIEW, 1972, 14 (04) :649-&
[2]  
BELETSKII VV, 1966, MOTION ARTIFICIAL SA
[3]   A TREATMENT OF RIGID BODY DYNAMICS [J].
CASEY, J .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1983, 50 (4A) :905-907
[4]  
CASEY J, 2006, IN PRESS MATH MECH S
[5]  
GREENWOOD DT, 1988, CLASSICAL DYNAMICS
[6]   On potential energies and constraints in the dynamics of rigid bodies and particles [J].
O'Reilly, OM ;
Srinivasa, AR .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2002, 8 (03) :169-180
[7]  
Rao A., 2006, DYNAMICS PARTICLES R
[8]  
Ziegler H., 1968, PRINCIPLES STRUCTURA