Ni-Fe-Cu-layered double hydroxides as high-performance electrocatalysts for alkaline water oxidation

被引:16
作者
Enhtuwshin, Enhbayar [1 ]
Mhin, Sungwook [2 ]
Kim, Kang Min [3 ]
Ryu, Jeong Ho [4 ]
Kim, So Jung [1 ]
Jung, Sun Young [1 ]
Kang, Sukhyun [3 ]
Choi, Seunggun [5 ]
Han, HyukSu [1 ]
机构
[1] Konkuk Univ, Dept Energy Engn, 120 Neungdong Ro, Seoul 05029, South Korea
[2] Kyonggi Univ, Dept Adv Mat Engn, Suwon, South Korea
[3] Korea Inst Ind Technol, Funct Mat & Components R&D Grp, Gangneung Si, South Korea
[4] Korea Natl Univ Transportat, Dept Mat Sci & Engn, Chungju Si, South Korea
[5] Hanyang Univ, Dept Energy Engn, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
electrocatalyst; layered double hydroxide; oxygen evolution reaction; self‐ supported catalyst; water splitting;
D O I
10.1002/er.6805
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Alkaline oxygen evolution reaction (OER) electrocatalysts have been widely studied for improving the efficiency and green hydrogen production through electrochemical water splitting. Currently, iron-doped nickel-LDHs (NF-LDHs) are regarded as the benchmark electrocatalyst for alkaline OER, primarily owing to the physicochemical synergetic effects between Ni and Fe. Here, the third element addition into NF-LDHs is designed to further enhance the electrocatalytic performance through the modulation of electronic property. Cu-doped NF-LDHs (NFC-LDHs) are developed with the self-supported structure on porous supports. NFC-LDHs can be grown on carbon cloth (CC) in an intriguing 2D nanosheet structure, wherein the surface electronic configuration is suitably modulated by interactions among Ni-Fe-Cu. Importantly, activation energy for OER can be lowered by adding Cu into NF-LDHs. Thereby, the NFC-LDHs exhibited enhanced OER activity and improved stability than those of nickel-LDHs (Ni-LDHs) and NF-LDHs. For NFC-LDHs, small overpotentials of only 230 and 250 mV yield current densities of 50 and 100 mA cm(-2), respectively. In addition, excellent electrochemical stability is demonstrated during long-term OER tests without any degradation demonstrating no dissolution of active metals water electrolysis due to synergetic effects among Ni-Fe-Cu.
引用
收藏
页码:15312 / 15322
页数:11
相关论文
共 56 条
[1]   Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review [J].
Anantharaj, Sengeni ;
Ede, Sivasankara Rao ;
Sakthikumar, Kuppan ;
Karthick, Kannimuthu ;
Mishra, Soumyaranjan ;
Kundu, Subrata .
ACS CATALYSIS, 2016, 6 (12) :8069-8097
[2]   Metallic Co4N Porous Nanowire Arrays Activated by Surface Oxidation as Electrocatalysts for the Oxygen Evolution Reaction [J].
Chen, Pengzuo ;
Xu, Kun ;
Fang, Zhiwei ;
Tong, Yun ;
Wu, Junchi ;
Lu, Xiuli ;
Peng, Xu ;
Ding, Hui ;
Wu, Changzheng ;
Xie, Yi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (49) :14710-14714
[3]   Vertically Aligned FeOOH/NiFe Layered Double Hydroxides Electrode for Highly Efficient Oxygen Evolution Reaction [J].
Chi, Jun ;
Yu, Hongmei ;
Qn, Bowen ;
Fu, Li ;
Jia, Jia ;
Yi, Baolian ;
Shao, Zhigang .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (01) :464-471
[4]   Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction [J].
Chung, Dong Young ;
Lopes, Pietro P. ;
Martins, Pedro Farinazzo Bergamo Dias ;
He, Haiying ;
Kawaguchi, Tomoya ;
Zapol, Peter ;
You, Hoydoo ;
Tripkovic, Dusan ;
Strmcnik, Dusan ;
Zhu, Yisi ;
Seifert, Soenke ;
Lee, Sungsik ;
Stamenkovic, Vojislav R. ;
Markovic, Nenad M. .
NATURE ENERGY, 2020, 5 (03) :222-230
[5]   NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes [J].
Dionigi, Fabio ;
Strasser, Peter .
ADVANCED ENERGY MATERIALS, 2016, 6 (23)
[6]   The synergetic effect of graphene on Cu2O nanowire arrays as a highly efficient hydrogen evolution photocathode in water splitting [J].
Dubale, Amare Aregahegn ;
Su, Wei-Nien ;
Tamirat, Andebet Gedamu ;
Pan, Chun-Jern ;
Aragaw, Belete Asefa ;
Chen, Hong-Ming ;
Chen, Ching-Hsiang ;
Hwang, Bing-Joe .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (43) :18383-18397
[7]   Self-Supported Nickel Iron Layered Double Hydroxide-Nickel Selenide Electrocatalyst for Superior Water Splitting Activity [J].
Dutta, Soumen ;
Indra, Arindam ;
Feng, Yi ;
Song, Taeseup ;
Paik, Ungyu .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (39) :33766-33774
[8]   Facile Synthesis of Unique Hexagonal Nanoplates of Zn/Co Hydroxy Sulfate for Efficient Electrocatalytic Oxygen Evolution Reaction [J].
Dutta, Soumen ;
Ray, Chaiti ;
Negishi, Yuichi ;
Pal, Tarasankar .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (09) :8134-8141
[9]   Catalytic applications of layered double hydroxides: recent advances and perspectives [J].
Fan, Guoli ;
Li, Feng ;
Evans, David G. ;
Duan, Xue .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (20) :7040-7066
[10]   Nickel-coated silicon photocathode for water splitting in alkaline electrolytes [J].
Feng, Ju ;
Gong, Ming ;
Kenney, Michael J. ;
Wu, Justin Z. ;
Zhang, Bo ;
Li, Yanguang ;
Dai, Hongjie .
NANO RESEARCH, 2015, 8 (05) :1577-1583