Comparison of the Hi-C, GAM and SPRITE methods using polymer models of chromatin

被引:40
作者
Fiorillo, Luca [1 ,2 ]
Musella, Francesco [1 ,2 ]
Kempfer, Rieke [3 ,4 ]
Chiariello, Andrea M. [1 ,2 ]
Bianco, Simona [1 ,2 ,3 ]
Kukalev, Alexander [3 ]
Irastorza-Azcarate, Ibai [3 ]
Esposito, Andrea [1 ,2 ]
Conte, Mattia [1 ,2 ]
Prisco, Antonella [5 ]
Pombo, Ana [3 ,4 ]
Nicodemi, Mario [1 ,2 ,3 ,6 ]
Abraham, Alex [1 ,2 ]
机构
[1] Univ Napoli Federico II, Dipartimento Fis, Naples, Italy
[2] Complesso Univ Monte St Angelo, INFN Napoli, Naples, Italy
[3] Max Delbruck Ctr Mol Med, Berlin Inst Med Syst Biol, Berlin, Germany
[4] Humboldt Univ, Berlin, Germany
[5] CNR IGB, Naples, Italy
[6] Berlin Inst Hlth, Berlin, Germany
基金
欧盟地平线“2020”; 美国国家卫生研究院;
关键词
MOUSE EMBRYONIC STEM; 3D GENOME; SPATIAL-ORGANIZATION; DOMAINS; ARCHITECTURE; DYNAMICS; PRINCIPLES; YEAST;
D O I
10.1038/s41592-021-01135-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Hi-C, split-pool recognition of interactions by tag extension (SPRITE) and genome architecture mapping (GAM) are powerful technologies utilized to probe chromatin interactions genome wide, but how faithfully they capture three-dimensional (3D) contacts and how they perform relative to each other is unclear, as no benchmark exists. Here, we compare these methods in silico in a simplified, yet controlled, framework against known 3D structures of polymer models of murine and human loci, which can recapitulate Hi-C, GAM and SPRITE experiments and multiplexed fluorescence in situ hybridization (FISH) single-molecule conformations. We find that in silico Hi-C, GAM and SPRITE bulk data are faithful to the reference 3D structures whereas single-cell data reflect strong variability among single molecules. The minimal number of cells required in replicate experiments to return statistically similar contacts is different across the technologies, being lowest in SPRITE and highest in GAM under the same conditions. Noise-to-signal levels follow an inverse power law with detection efficiency and grow with genomic distance differently among the three methods, being lowest in GAM for genomic separations >1 Mb.
引用
收藏
页码:482 / +
页数:14
相关论文
共 69 条
[1]   A Switch Between Topological Domains Underlies HoxD Genes Collinearity in Mouse Limbs [J].
Andrey, Guillaume ;
Montavon, Thomas ;
Mascrez, Benedicte ;
Gonzalez, Federico ;
Noordermeer, Daan ;
Leleu, Marion ;
Trono, Didier ;
Spitz, Francois ;
Duboule, Denis .
SCIENCE, 2013, 340 (6137) :1195-+
[2]   Active and poised promoter states drive folding of the extended HoxB locus in mouse embryonic stem cells [J].
Barbieri, Mariano ;
Xie, Sheila Q. ;
Triglia, Elena Torlai ;
Chiariello, Andrea M. ;
Bianco, Simona ;
de Santiago, Ines ;
Branco, Miguel R. ;
Rueda, David ;
Nicodemi, Mario ;
Pombo, Ana .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2017, 24 (06) :515-+
[3]   Complexity of chromatin folding is captured by the strings and binders switch model [J].
Barbieri, Mariano ;
Chotalia, Mita ;
Fraser, James ;
Lavitas, Liron-Mark ;
Dostie, Josee ;
Pombo, Ana ;
Nicodemi, Mario .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (40) :16173-16178
[4]   Complex multi-enhancer contacts captured by genome architecture mapping [J].
Beagrie, Robert A. ;
Scialdone, Antonio ;
Schueler, Markus ;
Kraemer, Dorothee C. A. ;
Chotalia, Mita ;
Xie, Sheila Q. ;
Barbieri, Mariano ;
de Santiago, Ines ;
Lavitas, Liron-Mark ;
Branco, Miguel R. ;
Fraser, James ;
Dostie, Josee ;
Game, Laurence ;
Dillon, Niall ;
Edwards, Paul A. W. ;
Nicodemi, Mario ;
Pombo, Ana .
NATURE, 2017, 543 (7646) :519-+
[5]   Modeling Single-Molecule Conformations of the HoxD Region in Mouse Embryonic Stem and Cortical Neuronal Cells [J].
Bianco, Simona ;
Annunziatella, Carlo ;
Andrey, Guillaume ;
Chiariello, Andrea M. ;
Esposito, Andrea ;
Fiorillo, Luca ;
Prisco, Antonella ;
Conte, Mattia ;
Campanile, Raffaele ;
Nicodemi, Mario .
CELL REPORTS, 2019, 28 (06) :1574-+
[6]   Polymer physics predicts the effects of structural variants on chromatin architecture [J].
Bianco, Simona ;
Lupianez, Dario G. ;
Chiariello, Andrea M. ;
Annunziatella, Carlo ;
Kraft, Katerina ;
Schoepflin, Robert ;
Wittler, Lars ;
Andrey, Guillaume ;
Vingron, Martin ;
Pombo, Ana ;
Mundlos, Stefan ;
Nicodemi, Mario .
NATURE GENETICS, 2018, 50 (05) :662-+
[7]   The Spatial Organization of the Human Genome [J].
Bickmore, Wendy A. .
ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, VOL 14, 2013, 14 :67-84
[8]   Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells [J].
Bintu, Bogdan ;
Mateo, Leslie J. ;
Su, Jun-Han ;
Sinnott-Armstrong, Nicholas A. ;
Parker, Mirae ;
Kinrot, Seon ;
Yamaya, Kei ;
Boettiger, Alistair N. ;
Zhuang, Xiaowei .
SCIENCE, 2018, 362 (6413) :419-+
[9]   Diffusion-Driven Looping Provides a Consistent Framework for Chromatin Organization [J].
Bohn, Manfred ;
Heermann, Dieter W. .
PLOS ONE, 2010, 5 (08)
[10]   Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization [J].
Brackley, Chris A. ;
Taylor, Stephen ;
Papantonis, Argyris ;
Cook, Peter R. ;
Marenduzzo, Davide .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (38) :E3605-E3611