Self-organizing maps of massive document collections

被引:10
作者
Kohonen, T [1 ]
机构
[1] Aalto Univ, Neural Networks Res Ctr, FIN-02015 Espoo, Finland
来源
IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL II | 2000年
关键词
D O I
10.1109/IJCNN.2000.857865
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Huge document collections can be organized according to textual similarities by the Self-Organizing Map (SOM) algorithm, when statistical representations of the textual contents are used as the feature vectors of the documents. In a practical experiment we mapped 6,840,568 patent abstracts onto a 1,002,240-node SOM. For the feature vectors we selected 500-dimensional random projections of the weighted word histograms.
引用
收藏
页码:3 / 9
页数:7
相关论文
共 22 条
[1]  
CHEN GY, NEURAL COMPUTATION, V9, P1667
[2]  
CHEN H, 1998, IEEE COMPUTER AUG, P75
[3]   Internet categorization and search: A self-organizing approach [J].
Chen, HC ;
Schuffels, C ;
Orwig, R .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 1996, 7 (01) :88-102
[4]  
HONKELA T, 1997, P WSOM 97 WORKSH SEL, P310
[5]  
Kaski S, 1998, IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, P413, DOI 10.1109/IJCNN.1998.682302
[6]  
KOHONEN T, 1993, 1993 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, P1147, DOI 10.1109/ICNN.1993.298719
[7]  
Kohonen T., 1995, SELF ORG MAPS
[8]  
KOHONEN T, 1992, S NEUR NETW ALL PERS
[9]  
KOHONEN T, 2000, IN PRESS IEEE T NEUR
[10]  
KOHONEN T, 1998, P ICANN98 8 INT C AR, V1, P65