The confluent supersymmetry algorithm for Dirac equations with pseudoscalar potentials

被引:20
作者
Contreras-Astorga, Alonso [1 ]
Schulze-Halberg, Axel
机构
[1] Indiana Univ Northwest, Dept Math & Actuarial Sci, Gary, IN 46408 USA
关键词
TRANSFORMATION; FAMILIES;
D O I
10.1063/1.4898184
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce the confluent version of the quantum-mechanical supersymmetry formalism for the Dirac equation with a pseudoscalar potential. Application of the formalism to spectral problems is discussed, regularity conditions for the transformed potentials are derived, and normalizability of the transformed solutions is established. Our findings extend and complement former results [L. M. Nieto, A. A. Pecheritsin, and B. F. Samsonov, "Intertwining technique for the one-dimensional stationary Dirac equation," Ann. Phys. 305, 151-189 (2003)]. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:16
相关论文
共 30 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F
[2]   Derivatives of any order of the confluent hypergeometric function 1F1(a,b,z) with respect to the parameter a or b [J].
Ancarani, L. U. ;
Gasaneo, G. .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (06)
[3]   Darboux transformation of the Schrodinger equation [J].
Bagrov, VG ;
Samsonov, BF .
PHYSICS OF PARTICLES AND NUCLEI, 1997, 28 (04) :374-397
[4]   Factorization method and new potentials from the inverted oscillator [J].
Bermudez, David ;
Fernandez C, David J. .
ANNALS OF PHYSICS, 2013, 333 :290-306
[5]   Wronskian differential formula for confluent supersymmetric quantum mechanics [J].
Bermudez, David ;
Fernandez C, David J. ;
Fernandez-Garcia, Nicolas .
PHYSICS LETTERS A, 2012, 376 (05) :692-696
[6]   Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators [J].
Contreras-Astorga, Alonso ;
Fernandez C, David J. ;
Negro, Javier .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
[7]  
COOPER F, 1995, PHYS REP, V251, P268
[8]  
Darboux G., 1882, C. R. Acad. Sci., V94, P1456
[9]   Scattering of neutral fermions by a pseudoscalar potential step in two-dimensional spacetime [J].
de Castro, AS .
PHYSICS LETTERS A, 2003, 309 (5-6) :340-344
[10]   Variational mechanics of water at biological interfaces [J].
Fernandez, Ariel .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (29)