RANDOM DESIGN KERNEL REGRESSION ESTIMATOR

被引:0
作者
Deshpande, Bhargavi [1 ]
Bhat, Sharada, V [1 ]
机构
[1] Karnatak Univ, Dept Stat, Dharwad 580003, Karnataka, India
来源
INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES | 2019年 / 15卷 / 01期
关键词
Regression estimator; Random design; Mean integrated square error (MESE); Relative efficiency (RE); Adaptive Nadaraya-Watson (NW) estimator; Kernel function;
D O I
暂无
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Nonparametric regression is a useful data analytic tool. Some kernel regression estimators are established for both fixed and random designs. In this paper, we study a varying kernel regression estimator based on half range for random design and its properties. The performance of the estimator with respect to some other estimators is obtained in terms of relative efficiency. The application of estimator is illustrated through a real data.
引用
收藏
页码:11 / 17
页数:7
相关论文
共 50 条
  • [31] Studies of different kernel functions in nuclear mass predictions with kernel ridge regression
    Wu, X. H.
    FRONTIERS IN PHYSICS, 2023, 11
  • [32] KLERC: kernel Lagrangian expectile regression calculator
    Songfeng Zheng
    Computational Statistics, 2021, 36 : 283 - 311
  • [33] KLERC: kernel Lagrangian expectile regression calculator
    Zheng, Songfeng
    COMPUTATIONAL STATISTICS, 2021, 36 (01) : 283 - 311
  • [34] INTEGRATED SQUARED ERROR OF KERNEL-TYPE ESTIMATOR OF DISTRIBUTION FUNCTION
    SHIRAHATA, S
    CHU, IS
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1992, 44 (03) : 579 - 591
  • [35] Barley seeds classification witha genetically optimized kernel density estimator
    Gui, Vasile
    Alexa, Florin
    Caleanu, Catalin
    CIMMACS '07: PROCEEDINGS OF THE 6TH WSEAS INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, 2007, : 131 - +
  • [36] RELATIVE PRECISION OF RANKED SET SAMPLING - A COMPARISON WITH THE REGRESSION ESTIMATOR
    PATIL, GP
    SINHA, AK
    TAILLE, C
    ENVIRONMETRICS, 1993, 4 (04) : 399 - 412
  • [37] A Novel Extension of Kernel Partial Least Squares Regression
    贾金明
    仲伟俊
    JournalofDonghuaUniversity(EnglishEdition), 2009, 26 (04) : 438 - 442
  • [38] Nonparametric Kernel Regression and Its Real Data Application
    Toupal, Tomas
    Vavra, Frantisek
    MATHEMATICAL METHODS IN ECONOMICS (MME 2017), 2017, : 813 - 818
  • [39] An Improved Variable Kernel Density Estimator Based on L2 Regularization
    Jin, Yi
    He, Yulin
    Huang, Defa
    MATHEMATICS, 2021, 9 (16)
  • [40] Universal Local Linear Kernel Estimators in Nonparametric Regression
    Linke, Yuliana
    Borisov, Igor
    Ruzankin, Pavel
    Kutsenko, Vladimir
    Yarovaya, Elena
    Shalnova, Svetlana
    MATHEMATICS, 2022, 10 (15)