Electrochemically driven conversion reaction in fluoride electrodes for energy storage devices

被引:110
作者
Li, Chilin [1 ]
Chen, Keyi [1 ,2 ]
Zhou, Xuejun [1 ]
Maier, Joachim [3 ]
机构
[1] Chinese Acad Sci, State Key Lab High Performance Ceram & Superfine, Shanghai Inst Ceram, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
[3] Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
LITHIUM-ION BATTERY; CAPACITY CATHODE MATERIAL; SOLID-STATE NMR; IRON FLUORIDE; METAL FLUORIDES; THIN-FILMS; REACTION-MECHANISMS; LI; PHASE; NANOCOMPOSITES;
D O I
10.1038/s41524-018-0079-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Exploring electrochemically driven conversion reactions for the development of novel energy storage materials is an important topic as they can deliver higher energy densities than current Li-ion battery electrodes. Conversion-type fluorides promise particularly high energy densities by involving the light and small fluoride anion, and bond breaking can occur at relatively low Li-activity (i.e., high cell voltage). Cells based on such electrodes may become competitors to other envisaged alternatives such as Li-sulfur or Li-air systems with their many unsolved thermodynamic and kinetic problems. Relevant conversion reactions are typically multiphase redox reactions characterized by nucleation and growth processes along with pronounced interfacial and mass transport phenomena. Hence significant overpotentials and nonequilibrium reaction pathways are involved. In this review, we summarize recent findings in terms of phase evolution phenomena and mechanistic features of (oxy) fluorides at different redox stages during the conversion process, enabled by advanced characterization technologies and simulation methods. It can be concluded that well-designed nanostructured architectures are helpful in mitigating kinetic problems such as the usually pronounced voltage hysteresis. In this context, doping and open-framework strategies are useful. By these tools, simple materials that are unable to allow for substantial Li nonstoichiometry (e.g., by Li-insertable channels) may be turned into electroactive materials.
引用
收藏
页数:15
相关论文
共 86 条
[1]   Probing the Sodiation-Desodiation Reactions in Nano-sized Iron Fluoride Cathode [J].
Ali, Ghulam ;
Lee, Ji-Hoon ;
Cho, Byung Won ;
Nam, Kyung-Wan ;
Ahn, Docheon ;
Chang, Wonyoung ;
Oh, Si Hyoung ;
Chung, Kyung Yoon .
ELECTROCHIMICA ACTA, 2016, 191 :307-316
[2]   An open-framework iron fluoride and reduced graphene oxide nanocomposite as a high-capacity cathode material for Na-ion batteries [J].
Ali, Ghulam ;
Oh, Si Hyoung ;
Kim, Se Young ;
Kim, Ji Young ;
Cho, Byung Won ;
Chung, Kyung Yoon .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (19) :10258-10266
[3]   Cathode performance and voltage estimation of metal trihalides [J].
Arai, H ;
Okada, S ;
Sakurai, Y ;
Yamaki, J .
JOURNAL OF POWER SOURCES, 1997, 68 (02) :716-719
[4]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[5]   Carbon metal fluoride nanocomposites - High-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries [J].
Badway, F ;
Cosandey, F ;
Pereira, N ;
Amatucci, GG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (10) :A1318-A1327
[6]   Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices [J].
Badway, F. ;
Mansour, A. N. ;
Pereira, N. ;
Al-Sharab, J. F. ;
Cosandey, F. ;
Plitz, I. ;
Amatucci, G. G. .
CHEMISTRY OF MATERIALS, 2007, 19 (17) :4129-4141
[7]   Carbon-metal fluoride nanocomposites -: Structure and electrochemistry of FeF3:C [J].
Badway, F ;
Pereira, N ;
Cosandey, F ;
Amatucci, GG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (09) :A1209-A1218
[8]   Investigation of the lithiation and delithiation conversion mechanisms of bismuth fluoride nanocomposites [J].
Bervas, M ;
Mansour, AN ;
Yoon, WS ;
Al-Sharab, JF ;
Badway, F ;
Cosandey, F ;
Klein, LC ;
Amatucci, GG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (04) :A799-A808
[9]   Reversible conversion reactions with lithium in bismuth oxyfluoride nanocomposites [J].
Bervas, M ;
Klein, LC ;
Amatucci, GG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (01) :A159-A170
[10]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]