Electrochemical behavior of interconnected Ti2Nb10O29 nanoparticles for high-power Li-ion battery anodes

被引:49
作者
De Pham-Cong [1 ]
Kim, Jinwoo [2 ,3 ]
Van Tan Tran [1 ]
Kim, Su Jae [1 ]
Jeong, Se-Young [1 ]
Choi, Jun-Hee [4 ]
Cho, Chae Ryong [1 ]
机构
[1] Pusan Natl Univ, Coll Nanosci & Nanotechnol, Dept Nanoenergy Engn, Busan 609735, South Korea
[2] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[3] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
[4] Samsung Elect, Samsung Adv Inst Technol, Device & Syst Res Ctr, Suwon 443803, South Korea
关键词
Ti2Nb10O29; nanofibers; single crystal; kinetics; diffusion coefficient; LITHIUM STORAGE; TEMPERATURE; PERFORMANCE; TIO2; NANO; NANOFIBERS; COMPOSITE; SPHERES;
D O I
10.1016/j.electacta.2017.03.203
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We synthesized polycrystalline Ti2Nb10O29 nanofibers (NFs) via a simple post-annealing process of aselectrospun polymeric NFs as an anode material for Li-ion batteries (LIBs). During the first discharge/charge process, the Ti2Nb10O29 NFs annealed at 900 C-circle exhibited insertion/extraction capacities of up to 344 and 304mAhg (1), corresponding to 19.1 and 16.7 mol Li+ per formula unit, respectively. This material exhibited excellent rate capability (93mAhg (1) at 15 Ag (1)) and a higher average diffusion coefficient (D-Li = similar to 1.5 x 10 (12)cm(2) s (1)) than Ti2Nb10O29 powder (similar to 6.9 x 10 (13)cm(2) s (1)). This performance can be attributed to the unique nanostructure of firmly interconnected, highly crystalline Ti2Nb10O29 nanograins, which facilitates the Li+ and electron transport. The kinetics obtained from current-voltage curves indicate a mixture of diffusion-limited and capacitive processes. The suggested electro-spinning/post annealing approach can effectively provide a simple route towards high-quality Ti2Nb10O29 NF-based anodes for high-performance LIBs. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:451 / 459
页数:9
相关论文
共 53 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[3]   A Critical Review of Thermal Issues in Lithium-Ion Batteries [J].
Bandhauer, Todd M. ;
Garimella, Srinivas ;
Fuller, Thomas F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :R1-R25
[4]   Stochastic Analysis of Diffusion Induced Damage in Lithium-Ion Battery Electrodes [J].
Barai, Pallab ;
Mukherjee, Partha P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (06) :A955-A967
[5]   A High-Energy Li-Ion Battery Using a Silicon-Based Anode and a Nano-Structured Layered Composite Cathode [J].
Chae, Changju ;
Noh, Hyung-Joo ;
Lee, Jung Kyoo ;
Scrosati, Bruno ;
Sun, Yang-Kook .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (20) :3036-3042
[6]   Bulk Ti2Nb10O29 as long-life and high-power Li-ion battery anodes [J].
Cheng, Qiushi ;
Liang, Jianwen ;
Zhu, Yongchun ;
Si, Lulu ;
Guo, Cong ;
Qian, Yitai .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (41) :17258-17262
[7]   Design and Synthesis of Bubble-Nanorod-Structured Fe2O3-Carbon Nanofibers as Advanced Anode Material for Li-Ion Batteries [J].
Cho, Jung Sang ;
Hong, Young Jun ;
Kang, Yun Chan .
ACS NANO, 2015, 9 (04) :4026-4035
[8]   Kinetic analysis of the Li+ ion intercalation behavior of solution derived nano-crystalline lithium manganate thin films [J].
Das, SR ;
Majumder, SB ;
Katiyar, RS .
JOURNAL OF POWER SOURCES, 2005, 139 (1-2) :261-268
[9]   Enhanced electrochemical performance of carbon-coated TiO2 nanobarbed fibers as anode material for lithium-ion batteries [J].
De Pham-Cong ;
Kim, Jae-Hyun ;
Jeong, Se-Young ;
Choi, Jun Hee ;
Kim, Jinwoo ;
Cho, Chae-Ryong .
ELECTROCHEMISTRY COMMUNICATIONS, 2015, 60 :204-207
[10]   Analysis of the Galvanostatic Intermittent Titration Technique (GITT) as applied to a lithium-ion porous electrode [J].
Dees, Dennis W. ;
Kawauchi, Shigehiro ;
Abraham, Daniel P. ;
Prakash, Jai .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :263-268