Extrapolating Forest Canopy Fuel Properties in the California Rim Fire by Combining Airborne LiDAR and Landsat OLI Data

被引:42
作者
Garcia, Mariano [1 ,2 ]
Saatchi, Sassan [2 ]
Casas, Angeles [3 ]
Koltunov, Alexander [4 ]
Ustin, Susan L. [4 ]
Ramirez, Carlos [5 ]
Balzter, Heiko [1 ,6 ]
机构
[1] Univ Leicester, Ctr Landscape & Climate Res, Dept Geog, Leicester LE1 7RH, Leics, England
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[3] Climate Corp, 201 Third St,Suite 1100, San Francisco, CA 94103 USA
[4] Univ Calif Davis, Ctr Spatial Technol & Remote Sensing CSTARS, Davis, CA 95618 USA
[5] US Forest Serv, USDA, Reg Remote Sensing Lab 5, Vallejo, CA 95652 USA
[6] Univ Leicester, Natl Ctr Earth Observat, Leicester LE1 7RH, Leics, England
来源
REMOTE SENSING | 2017年 / 9卷 / 04期
基金
美国国家科学基金会; 英国自然环境研究理事会;
关键词
LiDAR; Landsat OLI; data integration; canopy fuel load; canopy cover; canopy bulk density; megafires;
D O I
10.3390/rs9040394
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate, spatially explicit information about forest canopy fuel properties is essential for ecosystem management strategies for reducing the severity of forest fires. Airborne LiDAR technology has demonstrated its ability to accurately map canopy fuels. However, its geographical and temporal coverage is limited, thus making it difficult to characterize fuel properties over large regions before catastrophic events occur. This study presents a two-step methodology for integrating post-fire airborne LiDAR and pre-fire Landsat OLI (Operational Land Imager) data to estimate important pre-fire canopy fuel properties for crown fire spread, namely canopy fuel load (CFL), canopy cover (CC), and canopy bulk density (CBD). This study focused on a fire prone area affected by the large 2013 Rim fire in the Sierra Nevada Mountains, California, USA. First, LiDAR data was used to estimate CFL, CC, and CBD across an unburned 2 km buffer with similar structural characteristics to the burned area. Second, the LiDAR-based canopy fuel properties were extrapolated over the whole area using Landsat OLI data, which yielded an R-2 of 0.8, 0.79, and 0.64 and RMSE of 3.76 Mg.ha(-1), 0.09, and 0.02 kg.m(-3) for CFL, CC, and CBD, respectively. The uncertainty of the estimates was estimated for each pixel using a bootstrapping approach, and the 95% confidence intervals are reported. The proposed methodology provides a detailed spatial estimation of forest canopy fuel properties along with their uncertainty that can be readily integrated into fire behavior and fire effects models. The methodology could be also integrated into the LANDFIRE program to improve the information on canopy fuels.
引用
收藏
页数:18
相关论文
共 34 条
  • [21] Estimating forest canopy cover dynamics in Valles Caldera National Preserve, New Mexico, using LiDAR and Landsat data
    Humagain, Kamal
    Portillo-Quintero, Carlos
    Cox, Robert D.
    Cain, James W., III
    APPLIED GEOGRAPHY, 2018, 99 : 120 - 132
  • [22] Geostatistical estimation of forest biomass in interior Alaska combining Landsat-derived tree cover, sampled airborne lidar and field observations
    Babcock, Chad
    Finley, Andrew O.
    Andersen, Hans-Erik
    Pattison, Robert
    Cook, Bruce D.
    Morton, Douglas C.
    Alonzo, Michael
    Nelson, Ross
    Gregoire, Timothy
    Ene, Liviu
    Gobaldten, Terje
    Naesset, Erik
    REMOTE SENSING OF ENVIRONMENT, 2018, 212 : 212 - 230
  • [23] Incorporating of spatial effects in forest canopy height mapping using airborne, spaceborne lidar and spatial continuous remote sensing data
    Min, Wankun
    Chen, Yumin
    Huang, Wenli
    Wilson, John P.
    Tang, Hao
    Guo, Meiyu
    Xu, Rui
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 133
  • [24] Semantic segmentation of forest stands of pure species combining airborne lidar data and very high resolution multispectral imagery
    Dechesne, Clement
    Mallet, Clement
    Le Bris, Arnaud
    Gouet-Brunet, Valerie
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 126 : 129 - 145
  • [25] Persistent changes in the horizontal and vertical canopy structure of fire-tolerant forests after severe fire as quantified using multi-temporal airborne lidar data
    Karna, Yogendra K.
    Penman, Trent D.
    Aponte, Cristina
    Hinko-Najera, Nina
    Bennett, Lauren T.
    FOREST ECOLOGY AND MANAGEMENT, 2020, 472
  • [26] Forest fuel treatment detection using multi-temporal airborne lidar data and high-resolution aerial imagery: a case study in the Sierra Nevada Mountains, California
    Su, Yanjun
    Guo, Qinghua
    Collins, Brandon M.
    Fry, Danny L.
    Hu, Tianyu
    Kelly, Maggi
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (14) : 3322 - 3345
  • [27] Evaluating the uncertainty of Landsat-derived vegetation indices in quantifying forest fuel treatments using bi-temporal LiDAR data
    Ma, Qin
    Su, Yanjun
    Luo, Laiping
    Li, Le
    Kelly, Maggi
    Guo, Qinghua
    ECOLOGICAL INDICATORS, 2018, 95 : 298 - 310
  • [28] Community-based plant diversity monitoring of a dense-canopy and species-rich tropical forest using airborne LiDAR data
    Yip, Ka Hei Anson
    Liu, Rui
    Wu, Jin
    Hau, Billy Chi Hang
    Lin, Yinyi
    Zhang, Hongsheng
    ECOLOGICAL INDICATORS, 2024, 158
  • [29] Prediction of forest canopy fuel parameters in managed boreal forests using multispectral and unispectral airborne laser scanning data and aerial images
    Maltamo, M.
    Raty, J.
    Korhonen, L.
    Kotivuori, E.
    Kukkonen, M.
    Peltola, H.
    Kangas, J.
    Packalen, P.
    EUROPEAN JOURNAL OF REMOTE SENSING, 2020, 53 (01) : 245 - 257
  • [30] Comparative performance of Sentinel-2 MSI and Landsat-8 OLI data in canopy cover prediction using Random Forest model: Comparing model performance and tuning parameters
    Bera, Dipankar
    Das Chatterjee, Nilanjana
    Bera, Sudip
    Ghosh, Subrata
    Dinda, Santanu
    ADVANCES IN SPACE RESEARCH, 2023, 71 (11) : 4691 - 4709