Uniquely 3-colourable Steiner triple systems

被引:5
作者
Forbes, AD [1 ]
机构
[1] Open Univ, Dept Pure Math, Milton Keynes MK7 6AA, Bucks, England
关键词
Steiner triple system; 3-colouring;
D O I
10.1016/S0097-3165(02)00016-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Steiner triple system (STS(v)) is said to be 3-balanced if every 3-colouring of it is equitable; that is, if the cardinalities of the colour classes differ by at most one. A 3-colouring, phi, of an STS(v) is unique if there is no other way of 3-colouring the STS(v) except possibly by permuting the colours of phi. We show that for every admissible v greater than or equal to 25, there exists a 3-balanced STS(v) with a unique 3-colouring and an STS(v) which has a unique, non-equitable 3-colouring. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:49 / 68
页数:20
相关论文
共 12 条
[1]  
[Anonymous], TRIPLE SYSTEMS
[2]  
[Anonymous], 1958, MATH SCAND
[3]   Balanced Steiner triple systems [J].
Colbourn, C ;
Haddad, L ;
Linek, V .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 78 (02) :292-302
[4]  
Colbourn C. J., 1996, The CRC handbook of combinatorial designs
[5]   A NEW CLASS OF GROUP DIVISIBLE DESIGNS WITH BLOCK SIZE-3 [J].
COLBOURN, CJ ;
HOFFMAN, DG ;
REES, R .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1992, 59 (01) :73-89
[6]  
DEBRANDES M, 1982, SIAM ALGEBRAIC DISCR, V3, P1
[7]  
FORBES AD, IN PRESS DISCRETE MA
[8]   UNBALANCED STEINER TRIPLE-SYSTEMS [J].
HADDAD, L ;
RODL, V .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1994, 66 (01) :1-16
[9]  
Haddad L, 1999, J COMB DES, V7, P1
[10]  
Mathon R.A., 1983, ARS COMBINATORIA, V15, P3