Signal estimation with multiple delayed sensors using covariance information

被引:40
作者
Caballero-Aguila, R. [2 ]
Hermoso-Carazo, A. [1 ]
Jimenez-Lopez, J. D. [2 ]
Linares-Perez, J. [1 ]
Nakamori, S. [3 ]
机构
[1] Univ Granada, Dept Estadist & IO, E-18071 Granada, Spain
[2] Univ Jaen, Dept Estadist & IO, Jaen 23071, Spain
[3] Kagoshima Univ, Fac Educ, Dept Technol, Kagoshima 8900065, Japan
关键词
Least-squares estimation; Randomly delayed observations; Covariance information; Innovation approach; STATE ESTIMATION;
D O I
10.1016/j.dsp.2009.06.011
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recursive filtering and smoothing algorithms to estimate a signal from noisy measurements coming from multiple randomly delayed sensors, with different delay characteristics, are proposed. To design these algorithms an innovation approach is used, assuming that the state-space model of the signal is unknown and using only covariance information. To measure the precision of the proposed estimators formulas to calculate the filtering and smoothing error covariance matrices are also derived. The effectiveness of the estimators is illustrated by a numerical simulation example where a signal is estimated using observations from two randomly delayed sensors having different delay properties. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:528 / 540
页数:13
相关论文
共 12 条
[1]   Hidden Markov model state estimation with randomly delayed observations [J].
Evans, JS ;
Krishnamurthy, V .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (08) :2157-2166
[2]   Minimum variance generalized state estimators for multiple sensors with different delay rates [J].
Hounkpevi, Franck O. ;
Yaz, Edwin E. .
SIGNAL PROCESSING, 2007, 87 (04) :602-613
[3]  
Kailath T, 2000, PR H INF SY, pXIX
[4]   Problem of state estimation via asynchronous communication channels with irregular transmission times [J].
Matveev, AS ;
Savkin, AV .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (04) :670-676
[5]   A general smoothing equation for signal estimation using randomly delayed observations in the correlated signal-noise case [J].
Nakamori, S. ;
Hermoso-Carazo, A. ;
Linares-Perez, J. .
DIGITAL SIGNAL PROCESSING, 2006, 16 (04) :369-388
[6]   Quadratic estimation of multivariate signals from randomly delayed measurements [J].
Nakamori, S ;
Hermoso-Carazo, A ;
Linares-Pérez, J .
MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2005, 16 (04) :417-438
[7]   Recursive estimators of signals from measurements with stochastic delays using covariance information [J].
Nakamori, S ;
Caballero-Aguila, R ;
Hermoso-Carazo, A ;
Linares-Pérez, J .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 162 (01) :65-79
[8]  
Nakamori S, 2004, IEICE T FUND ELECTR, VE87A, P1219
[9]   STATE ESTIMATION USING RANDOMLY DELAYED MEASUREMENTS [J].
RAY, A ;
LIOU, LW ;
SHEN, JH .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1993, 115 (01) :19-26
[10]   Interconnected network state estimation using randomly delayed measurements [J].
Su, CL ;
Lu, CN .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2001, 16 (04) :870-878