Fractional matching preclusion for crossed cubes

被引:0
作者
Zou, Jinyu [1 ]
Ye, Chengfu [1 ]
Wu, Miaolin [2 ]
Zhang, Shumin [2 ]
机构
[1] Qinghai Normal Univ, Sch Comp Sci, Xining 810008, Qinghai, Peoples R China
[2] Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
基金
美国国家科学基金会;
关键词
Fractional perfect matching; Fractional strong matching preclusion; Crossed cube;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose F be an edge set and F' a subset of edges and/or vertices of a graph G, then F is a fractional matching preclusion(FMP) set and F' is a fractional strong matching preclusion (FSMP) set if G - F and G - F' contains no fractional perfect matching. The FMP(FSMP) number of G is the minimum size of FMP(FSMP) sets of G. In this paper, we obtain the FMP and FSMP number for the crossed cubes. In addition, all the optimal fractional strong matching preclusion sets of these graphs are categorized.
引用
收藏
页码:125 / 137
页数:13
相关论文
共 10 条
[1]   STRONG MATCHING PRECLUSION FOR THE ALTERNATING GROUP GRAPHS AND SPLIT-STARS [J].
Bonneville, Philip ;
Cheng, Eddie ;
Renzi, Joseph .
JOURNAL OF INTERCONNECTION NETWORKS, 2011, 12 (04) :277-298
[2]  
Brigham R.C., 2005, Congressus Numerantium, V174, P185
[3]   TOPOLOGICAL PROPERTIES OF THE CROSSED CUBE ARCHITECTURE [J].
EFE, K ;
BLACKWELL, PK ;
SLOUGH, W ;
SHIAU, T .
PARALLEL COMPUTING, 1994, 20 (12) :1763-1775
[4]  
Huang WT, 2002, IEICE T FUND ELECTR, VE85A, P1359
[5]   Fractional matching preclusion of graphs [J].
Liu, Yan ;
Liu, Weiwei .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (02) :522-533
[6]   Strong matching preclusion number of graphs [J].
Mao, Yaping ;
Wang, Zhao ;
Cheng, Eddie ;
Melekian, Christopher .
THEORETICAL COMPUTER SCIENCE, 2018, 713 :11-20
[7]  
박정흠, 2008, [Journal of KIISE : Computer Systems and Theory, 정보과학회논문지 : 시스템 및 이론], V35, P60
[8]   Strong matching preclusion [J].
Park, Jung-Heum ;
Ihm, Insung .
THEORETICAL COMPUTER SCIENCE, 2011, 412 (45) :6409-6419
[9]  
Scheinerman E.R., 2011, Fractional Graph Theory: a Rational Approach to the Theory of Graphs
[10]  
Wang Z., THEOR COMPUT SCI