Vessel radius mapping in an extended model of transverse relaxation

被引:22
作者
Buschle, Lukas Reinhold [1 ,2 ]
Ziener, Christian H. [1 ,2 ]
Zhang, Ke [1 ]
Sturm, Volker J. F. [1 ,2 ]
Kampf, Thomas [3 ,4 ]
Hahn, Artur [2 ]
Solecki, Gergely [5 ]
Winkler, Frank [5 ]
Bendszus, Martin [2 ]
Heiland, Sabine [2 ]
Schlemmer, Heinz-Peter [1 ]
Kurz, Felix T. [1 ,2 ]
机构
[1] German Canc Res Ctr, Radiol, INF 280, D-69120 Heidelberg, Germany
[2] Univ Hosp Heidelberg, Dept Neuroradiol, INF 400, D-69120 Heidelberg, Germany
[3] Univ Wurzburg, Dept Expt Phys 5, D-97074 Wurzburg, Germany
[4] Univ Hosp Wurzburg, Dept Neuroradiol, Josef Schneider Str 11, D-97080 Wurzburg, Germany
[5] German Canc Res Ctr, Neurooncol, INF 280, D-69120 Heidelberg, Germany
关键词
Spin dephasing; NMR transverse relaxation; Strong collision approximation; Weak field approximation; MR SIGNAL FORMATION; MAGNETIC-FIELD; IN-VIVO; BLOOD-VOLUME; MOUSE-BRAIN; GAUSSIAN APPROXIMATION; SPIN RELAXATION; CEREBRAL-CORTEX; DIPOLE FIELD; SUSCEPTIBILITY;
D O I
10.1007/s10334-018-0677-9
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Spin dephasing of the local magnetization in blood vessel networks can be described in the static dephasing regime (where diffusion effects may be ignored) by the established model of Yablonskiy and Haacke. However, for small capillary radii, diffusion phenomena for spin-bearing particles are not negligible. In this work, we include diffusion effects for a set of randomly distributed capillaries and provide analytical expressions for the transverse relaxation times T2* and T2 in the strong collision approximation and the Gaussian approximation that relate MR signal properties with microstructural parameters such as the mean local capillary radius. Theoretical results are numerically validated with random walk simulations and are used to calculate capillary radius distribution maps for glioblastoma mouse brains at 9.4 T. For representative tumor regions, the capillary maps reveal a relative increase of mean radius for tumor tissue towards healthy brain tissue of (p < 0.001). The presented method may be used to quantify angiogenesis or the effects of antiangiogenic therapy in tumors whose growth is associated with significant microvascular changes.
引用
收藏
页码:531 / 551
页数:21
相关论文
共 112 条
[81]   Magnetic resonance imaging biomarkers for clinical routine assessment of microvascular architecture in glioma [J].
Stadlbauer, Andreas ;
Zimmermann, Max ;
Heinz, Gertraud ;
Oberndorfer, Stefan ;
Doerfler, Arnd ;
Buchfelder, Michael ;
Roessler, Karl .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2017, 37 (02) :632-643
[82]   TRANSVERSE SPIN RELAXATION IN INHOMOGENEOUS MAGNETIC-FIELDS [J].
STOLLER, SD ;
HAPPER, W ;
DYSON, FJ .
PHYSICAL REVIEW A, 1991, 44 (11) :7459-7477
[83]   Gaussian approximation in the theory of MR signal formation in the presence of structure-specific magnetic field inhomogeneities. Effects of impermeable susceptibility inclusions [J].
Sukstanskii, AL ;
Yablonskiy, DA .
JOURNAL OF MAGNETIC RESONANCE, 2004, 167 (01) :56-67
[84]   Gaussian approximation in the theory of MR signal formation in the presence of structure-specific magnetic field inhomogeneities [J].
Sukstanskii, AL ;
Yablonskiy, DA .
JOURNAL OF MAGNETIC RESONANCE, 2003, 163 (02) :236-247
[85]   BLOCH EQUATIONS WITH DIFFUSION TERMS [J].
TORREY, HC .
PHYSICAL REVIEW, 1956, 104 (03) :563-565
[86]   In vivo assessment of tumoral angiogenesis [J].
Troprès, I ;
Lamalle, L ;
Péoc'h, M ;
Farion, R ;
Usson, Y ;
Décorps, M ;
Rémy, C .
MAGNETIC RESONANCE IN MEDICINE, 2004, 51 (03) :533-541
[87]  
Troprès I, 2001, MAGN RESON MED, V45, P397, DOI 10.1002/1522-2594(200103)45:3<397::AID-MRM1052>3.0.CO
[88]  
2-3
[89]   Imaging the Microvessel Caliber and Density: Principles and Applications of Microvascular MRI [J].
Tropres, Irene ;
Pannetier, Nicolas ;
Grand, Sylvie ;
Lemasson, Benjamin ;
Moisan, Anaick ;
Peoc'h, Michel ;
Remy, Chantal ;
Barbier, Emmanuel L. .
MAGNETIC RESONANCE IN MEDICINE, 2015, 73 (01) :325-341
[90]   Separation of Cellular and BOLD Contributions to T2* Signal Relaxation [J].
Ulrich, Xialing ;
Yablonskiy, Dmitriy A. .
MAGNETIC RESONANCE IN MEDICINE, 2016, 75 (02) :606-615