A Study on the Solutions of a Multiterm FBVP of Variable Order

被引:24
作者
Bouazza, Zoubida [1 ]
Etemad, Sina [2 ]
Souid, Mohammed Said [3 ]
Rezapour, Shahram [2 ,4 ]
Martinez, Francisco [5 ]
Kaabar, Mohammed K. A. [6 ]
机构
[1] Djillali Liabes Univ Sidi Bel Abbes, Math Lab, Sidi Bel Abbes, Algeria
[2] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[3] Univ Tiaret, Dept Econ Sci, Tiaret, Algeria
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[5] Technol Univ Cartagena, Dept Appl Math & Stat, Cartagena 30203, Spain
[6] United Nations Relief & Works Agcy UNRWA Palestin, Jabalia Camp, Gaza Strip Jabalya, Palestine
关键词
BOUNDARY-VALUE-PROBLEMS; DIFFERENTIAL-EQUATIONS; NUMERICAL-METHODS; EXISTENCE;
D O I
10.1155/2021/9939147
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present research study, for a given multiterm boundary value problem (BVP) involving the nonlinear fractional differential equation (NnLFDEq) of variable order, the uniqueness-existence properties are analyzed. To arrive at such an aim, we first investigate some specifications of this kind of variable order operator and then derive required criteria confirming the existence of solution. All results in this study are established with the help of two fixed-point theorems and examined by a practical example.
引用
收藏
页数:9
相关论文
共 36 条
[31]   Variable-order fractional derivatives and their numerical approximations [J].
Valerio, Duarte ;
da Costa, Jose Sa .
SIGNAL PROCESSING, 2011, 91 (03) :470-483
[32]   The existence of solutions and generalized Lyapunov-type inequalities to boundary value problems of differential equations of variable order [J].
Zhang, Shuqin ;
Hu, Lei .
AIMS MATHEMATICS, 2020, 5 (04) :2923-2943
[33]   Unique Existence Result of Approximate Solution to Initial Value Problem for Fractional Differential Equation of Variable Order Involving the Derivative Arguments on the Half-Axis [J].
Zhang, Shuqin ;
Hu, Lei .
MATHEMATICS, 2019, 7 (03)
[34]   The existeness and uniqueness result of solutions to initial value problems of nonlinear diffusion equations involving with the conformable variable derivative [J].
Zhang, Shuqin ;
Li, Shanshan ;
Hu, Lei .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) :1601-1623
[35]  
Zhang SQ, 2013, ELECTRON J DIFFER EQ, P1
[36]   NUMERICAL METHODS FOR THE VARIABLE-ORDER FRACTIONAL ADVECTION-DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM [J].
Zhuang, P. ;
Liu, F. ;
Anh, V. ;
Turner, I. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) :1760-1781