A Study on the Solutions of a Multiterm FBVP of Variable Order

被引:24
作者
Bouazza, Zoubida [1 ]
Etemad, Sina [2 ]
Souid, Mohammed Said [3 ]
Rezapour, Shahram [2 ,4 ]
Martinez, Francisco [5 ]
Kaabar, Mohammed K. A. [6 ]
机构
[1] Djillali Liabes Univ Sidi Bel Abbes, Math Lab, Sidi Bel Abbes, Algeria
[2] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[3] Univ Tiaret, Dept Econ Sci, Tiaret, Algeria
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[5] Technol Univ Cartagena, Dept Appl Math & Stat, Cartagena 30203, Spain
[6] United Nations Relief & Works Agcy UNRWA Palestin, Jabalia Camp, Gaza Strip Jabalya, Palestine
关键词
BOUNDARY-VALUE-PROBLEMS; DIFFERENTIAL-EQUATIONS; NUMERICAL-METHODS; EXISTENCE;
D O I
10.1155/2021/9939147
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present research study, for a given multiterm boundary value problem (BVP) involving the nonlinear fractional differential equation (NnLFDEq) of variable order, the uniqueness-existence properties are analyzed. To arrive at such an aim, we first investigate some specifications of this kind of variable order operator and then derive required criteria confirming the existence of solution. All results in this study are established with the help of two fixed-point theorems and examined by a practical example.
引用
收藏
页数:9
相关论文
共 36 条
[1]  
Akgul A, 2017, Int. J. Optim. Control Theor. Appl, V7, P112, DOI DOI 10.11121/IJOCTA.01.2017.00368
[2]   A Solution for Volterra Fractional Integral Equations by Hybrid Contractions [J].
Alqahtani, Badr ;
Aydi, Hassen ;
Karapinar, Erdal ;
Rakocevic, Vladimir .
MATHEMATICS, 2019, 7 (08)
[3]  
[Anonymous], 1995, Anal. Math., DOI DOI 10.1007/BF01911126
[4]  
[Anonymous], 1993, Integral Transform Spec. Funct., DOI DOI 10.1080/10652469308819027
[5]  
Aydi H, 2020, MEDITERR J MATH, V17, DOI 10.1007/s00009-019-1450-7
[6]   A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative [J].
Baleanu, Dumitru ;
Jajarmi, Amin ;
Mohammadi, Hakimeh ;
Rezapour, Shahram .
CHAOS SOLITONS & FRACTALS, 2020, 134
[7]   A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions [J].
Baleanu, Dumitru ;
Etemad, Sina ;
Rezapour, Shahram .
BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
[8]   Mechanics with variable-order differential operators [J].
Coimbra, CFM .
ANNALEN DER PHYSIK, 2003, 12 (11-12) :692-703
[9]  
Golmankhane A. K., 2020, J MATH MODEL FINANC, V1, P181
[10]   Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations' [J].
Gomez-Aguilar, J. F. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 494 :52-75