Role of the hyal-Cu (II) complex on bovine aortic and lymphatic endothelial cells behavior on microstructured surfaces

被引:26
作者
Barbucci, R
Lamponi, S
Magnani, A
Piras, FM
Rossi, A
Weber, E
机构
[1] Univ Siena, Dept Chem & Biosyst Sci, CRISMA, I-53100 Siena, Italy
[2] Univ Siena, Univ Ctr Colle Val Elsa, I-53100 Siena, Italy
[3] Univ Siena, Dept Neurosci, Mol Med Sect, I-53100 Siena, Italy
关键词
D O I
10.1021/bm049568g
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ability of micropatterned surfaces to modulate cell behavior is combined with the well-known angiogenic property of the hyaluronan-Cu (II) complex. Hyaluronan-Cu (II) microstripes 100 and 25 mum wide on aminosilanised glass substrates were fabricated by photoimmobilization following two different methods: i.e., method I consisting in the photoimmobilization of the Hyal-Cu (II) complex; and method II based on the photoimmobilization of Hyal followed by the coordination with Cu (II). The chemistry and topography of the fabricated micropatterned samples were investigated by ATR FT-IR, atomic absorption, AFM, SEM, and ToF-SIMS. ATR FT-IR analysis demonstrated that hyaluronan conjugated with a photoreactive moiety was able to coordinate Cu (II) ions and that the photoimmobilization process was successful, as indicated by the intensity decrease of the IR band of the azidic group after the photoreaction. AFM and SEM images showed that reproducible Hyal-Cu (II) microstructures with both chemical and topographical heterogeneities have been obtained by the two preparation methods. The distribution of copper on the fabricated Hyal-Cu (II) microstructures has been investigated by ToF-SIMS. In both ToF-SIMS images and spectra, on Hyal-Cu (II) microstructures prepared by method I, the Cu peak (63 m/z) was detected only on the Hyal-Cu (II) microstripes, while on Hyal-Cu (II) microstructures prepared by method II, the Cu peak showed the same intensity both on the Hyal-Cu (II) microstripes and on the aminosilanised glass substrate, in agreement with the higher amount of Cu revealed by atomic absorption. The influence of Hyal-Cu (II) micropatterned surfaces on BAEC and LEC, in terms of migration and adhesion, has been analyzed. The results obtained indicate that Hyal-Cu (II) influences BAEC behavior inducing cell migration, while it is devoid of any effect on LEC.
引用
收藏
页码:212 / 219
页数:8
相关论文
共 30 条
[1]  
ALESSANDRI G, 1983, CANCER RES, V43, P1790
[2]  
Badet J, 1990, Blood Coagul Fibrinolysis, V1, P721
[3]   Cu(II) and Zn(II) complexes with hyaluronic acid and its sulphated derivative - Effect on the motility of vascular endothelial cells [J].
Barbucci, R ;
Magnani, A ;
Lamponi, S ;
Mitola, S ;
Ziche, M ;
Morbidelli, L ;
Bussolino, F .
JOURNAL OF INORGANIC BIOCHEMISTRY, 2000, 81 (04) :229-237
[4]   The use of hyaluronan and its sulphated derivative patterned with micrometric scale on glass substrate in melanocyte cell behaviour [J].
Barbucci, R ;
Magnani, A ;
Lamponi, S ;
Pasqui, D ;
Bryan, S .
BIOMATERIALS, 2003, 24 (06) :915-926
[5]   Micropatterned surfaces for the control of endothelial cell behaviour [J].
Barbucci, R ;
Lamponi, S ;
Magnani, A ;
Pasqui, D .
BIOMOLECULAR ENGINEERING, 2002, 19 (2-6) :161-170
[6]   Cu2+- and Ag+-complexes with a hyaluronane-based hydrogel [J].
Barbucci, R ;
Leone, G ;
Magnani, A ;
Montanaro, L ;
Arciola, CR ;
Peluso, G ;
Petillo, O .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (10) :3084-3092
[7]   Metal complexes with linear and crosslinked polysaccharides as mediators of angiogenesis [J].
Barbucci, R ;
Lamponi, S ;
Magnani, A ;
Peluso, G ;
Petillo, O .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2001, 12 (3-4) :271-278
[8]  
Barbucci R, 2000, MACROMOL SYMP, V156, P239, DOI 10.1002/1521-3900(200007)156:1<239::AID-MASY239>3.0.CO
[9]  
2-J
[10]  
Beaty R., 1993, CONCEPTS INSTRUMENTA