One-step finite-difference time-domain algorithm to solve the Maxwell equations

被引:21
作者
De Raedt, H [1 ]
Michielsen, K [1 ]
Kole, JS [1 ]
Figge, MT [1 ]
机构
[1] Univ Groningen, Ctr Mat Sci, NL-9747 AG Groningen, Netherlands
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 05期
关键词
D O I
10.1103/PhysRevE.67.056706
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a one-step algorithm to solve the time-dependent Maxwell equations for systems with spatially varying permittivity and permeability. We compare the results of this algorithm with those obtained from the Yee algorithm and from unconditionally stable algorithms. We demonstrate that for a range of applications the one-step algorithm may be orders of magnitude more efficient than multiple time-step, finite-difference time-domain algorithms. We discuss both the virtues and limitations of this one-step approach.
引用
收藏
页数:12
相关论文
共 27 条
[1]  
Born M., 2006, PRINCIPLES OPTICS
[2]   PRODUCT FORMULA ALGORITHMS FOR SOLVING THE TIME-DEPENDENT SCHRODINGER-EQUATION [J].
DERAEDT, H .
COMPUTER PHYSICS REPORTS, 1987, 7 (01) :1-72
[3]  
GANDI OP, 1998, ADV COMPUTATIONAL EL
[4]   Numerical solution of the time-dependent Maxwell's equations for random dielectric media [J].
Harshawardhan, W ;
Su, Q ;
Grobe, R .
PHYSICAL REVIEW E, 2000, 62 (06) :8705-8712
[5]  
HOUSHMAND B, 1998, ADV COMPUTATIONAL EL
[6]   Calculating the linear response functions of noninteracting electrons with a time-dependent Schrodinger equation [J].
Iitaka, T ;
Nomura, S ;
Hirayama, H ;
Zhao, XW ;
Aoyagi, Y ;
Sugano, T .
PHYSICAL REVIEW E, 1997, 56 (01) :1222-1229
[7]  
Jackson J.D., 2001, Classical Electrodynmaics, VThird
[8]   Unconditionally stable algorithms to solve the time-dependent Maxwell equations [J].
Kole, JS ;
Figge, MT ;
De Raedt, H .
PHYSICAL REVIEW E, 2001, 64 (06) :66705/1-66705/14
[9]   Higher-order unconditionally stable algorithms to solve the time-dependent Maxwell equations [J].
Kole, J.S. ;
Figge, M.T. ;
De Raedt, H. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (06) :1-066705
[10]  
Kunz K. S., 1993, FINITE DIFFERENCE TI