Improving the Clark-Suen bound on the domination number of the Cartesian product of graphs

被引:8
|
作者
Bresar, Bostjan [1 ,2 ]
机构
[1] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[2] Inst Math Phys & Mech, Ljubljana, Slovenia
关键词
Cartesian product; Domination; Vizing's conjecture; Clark-Suen bound;
D O I
10.1016/j.disc.2017.05.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A long-standing Vizing's conjecture asserts that the domination number of the Cartesian product of two graphs is at least as large as the product of their domination numbers; one of the most significant results related to the conjecture is the bound of Clark and Suen, gamma(G square H) >= gamma(G) gamma(H)/2, where gamma stands for the domination number, and G square H is the Cartesian product of graphs G and H. In this note, we improve this bound by employing the 2-packing number rho(G) of a graph G into the formula, asserting that gamma(G square H) >= (2 gamma(G) - rho(G)) gamma (H)/3. The resulting bound is better than that of Clark and Suen whenever G is a graph with rho(G) < gamma(G)/2, and in the case G has diameter 2 reads as gamma(GQH) >= (2 gamma(G) - 1) gamma(H)/3. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:2398 / 2401
页数:4
相关论文
共 50 条
  • [1] On the power domination number of the Cartesian product of graphs
    Koh, K. M.
    Soh, K. W.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2019, 16 (03) : 253 - 257
  • [2] Certain domination numbers for Cartesian product of graphs
    Arulanand, S.
    Rajan, R. Sundara
    Prabhu, S.
    Stephen, Sudeep
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2024, 27 (03) : 1045 - 1058
  • [3] Power domination of the cartesian product of graphs
    Koh, K. M.
    Soh, K. W.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2016, 13 (01) : 22 - 30
  • [4] ON TOTAL DOMINATION IN THE CARTESIAN PRODUCT OF GRAPHS
    Bresar, Bostjan
    Hartinger, Tatiana Romina
    Kos, Tim
    Milanic, Martin
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (04) : 963 - 976
  • [6] On the geodetic domination and domination numbers of some Cartesian product graphs
    Zhao, Min
    Wang, Qin
    ARS COMBINATORIA, 2019, 142 : 381 - 391
  • [7] On the {k}-domination number of Cartesian products of graphs
    Hou, Xinmin
    Lu, You
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3413 - 3419
  • [8] GLOBAL EQUITABLE DOMINATION IN CARTESIAN PRODUCT OF GRAPHS
    Vaidya, S. K.
    Pandit, R. M.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2024, 41 (05): : 341 - 356
  • [9] Convex domination in the composition and cartesian product of graphs
    Labendia, Mhelmar A.
    Canoy, Sergio R., Jr.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2012, 62 (04) : 1003 - 1009
  • [10] Convex domination in the composition and cartesian product of graphs
    Mhelmar A. Labendia
    Sergio R. Canoy
    Czechoslovak Mathematical Journal, 2012, 62 : 1003 - 1009