Creating ensembles of classifiers via fuzzy clustering and deflection

被引:36
作者
Zhang, Huaxiang [1 ]
Lu, Jing [2 ]
机构
[1] Shandong Normal Univ, Dept Comp Sci, Jinan 250014, Shandong, Peoples R China
[2] Shandong Coll Finance, Dept Comp Sci, Jinan 250014, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuzzy clustering; Ensemble classifier; Deflection; Information entropy; ROTATION FOREST; CLASSIFICATION; ALGORITHM; ACCURACY;
D O I
10.1016/j.fss.2009.11.013
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Ensembles of classifiers can increase the performance of pattern recognition, and have become a hot research topic. High classification accuracy and diversity of the component classifiers are essential to obtain good generalization capability of an ensemble. We review the methods used to learn diverse classifiers, employ fuzzy clustering with deflection to learn the distribution characteristics of the training data, and propose a novel sampling approach to generate training data sets for the component classifiers. Our approach increases the classification accuracy and diversity of the component classifiers. The approach is evaluated using the base classifier c4.5, and the experimental results show that it outperforms Bagging and AdaBoost on almost all the randomly selected 20 benchmark UCI data sets. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1790 / 1802
页数:13
相关论文
共 32 条
[1]  
[Anonymous], Pattern Recognition with Fuzzy Objective Function Algorithms
[2]   An empirical comparison of voting classification algorithms: Bagging, boosting, and variants [J].
Bauer, E ;
Kohavi, R .
MACHINE LEARNING, 1999, 36 (1-2) :105-139
[3]  
Blake C. L., 1998, Uci repository of machine learning databases
[4]  
Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1023/A:1018054314350
[5]  
Breiman L., 1998, 518 U CAL STAT DEP
[6]  
Brown G., 2005, Information Fusion, V6, P5, DOI 10.1016/j.inffus.2004.04.004
[7]   Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets [J].
Bryll, R ;
Gutierrez-Osuna, R ;
Quek, F .
PATTERN RECOGNITION, 2003, 36 (06) :1291-1302
[8]  
Freund Y., 1996, INT C MACH LEARN ICM, V6, P148, DOI DOI 10.5555/3091696.3091715
[9]   Cooperative coevolution of artificial neural network ensembles for pattern classification [J].
García-Pedrajas, N ;
Hervás-Martínez, U ;
Ortiz-Boyer, D .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2005, 9 (03) :271-302
[10]  
García-Pedrajas N, 2007, J MACH LEARN RES, V8, P1