Global existence and time decay of small solutions to the Landau-Ginzburg type equations

被引:21
|
作者
Hayashi, N [1 ]
Kaikina, EI
Naumkin, PI
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
[2] Inst Tecnol Morelia, Dept Ciencias Basicas, Morelia, Michoacan, Mexico
[3] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58089, Michoacan, Mexico
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2003年 / 90卷 / 1期
关键词
D O I
10.1007/BF02786554
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Cauchy problem for the nonlinear dissipative equations (0.1) uo∂u-αδu + Β|u|2/nu = 0,x ∃ Rn,t } 0,u(0,x) = u0(x),x ∃ Rn, where α,Β ∃ C, ℜα 0. We are interested in the dissipative case ℜα 0, and ℜδ(α,Β)≥ 0, θ = ¦∫ u0(x)dx| ⊋ 0, where δ(α, Β) = ##|α|n-1nn/2 / ((n + 1)|α|2 + α2n/2. Furthermore, we assume that the initial data u0 ∃ Lp are such that (1 + ¦x¦)αu0 ∃ L1, with sufficiently small norm ∃ = (1 + ¦x¦)α u0 1 + u0 p, wherep 1, α ∃ (0,1). Then there exists a unique solution of the Cauchy problem (0.1)u(t, x) ∃ C ((0, ∞); L∞) ∩ C ([0, ∞); L1 ∩ Lp) satisfying the time decay estimates for allt0 u(t)||∞ Cɛt-n/2(1 + η log 〈t〉)-n/2, if hg = θ2/n 2π ℜδ(α, Β) 0; u(t)||∞ Cɛt-n/2(1 + Μ log 〈t〉)-n/4, if η = 0 and Μ = θ4/n 4π)2 (ℑδ(α, Β))2 ℜ((1 + 1/n) υ1-1 υ2) 0; and u(t)||∞ Cɛt-n/2(1 + κ log 〈t〉)-n/6, if η = 0, Μ = 0, κ 0, where υl,l = 1,2 are defined in (1.2), κ is a positive constant defined in (2.31).
引用
收藏
页码:141 / 173
页数:33
相关论文
共 50 条
  • [1] Global existence and time decay of small solutions to the landau-ginzburg type equations
    Nakao Hayashi
    Elena I. Kaikina
    Pavel I. Naumkin
    Journal d’Analyse Mathématique, 2003, 90 : 141 - 173
  • [2] Asymptotic expansion of small solutions to the Landau-Ginzburg type equations
    Hayashi, N
    Kaikina, EI
    Naumkin, PI
    ASYMPTOTIC ANALYSIS, 2002, 32 (02) : 91 - 106
  • [3] Large time behavior of solutions to the Landau-Ginzburg type equations
    Hayashi, N
    Kaikina, EI
    Naumkin, PI
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 315 - 319
  • [4] Large Time Behavior of Small Solutions to Dirichlet Problem for Landau-Ginzburg Type Equations
    Hayashi, Nakao
    Ito, Naoko
    Kaikina, Elena I.
    Naumkin, Pavel I.
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2004, 47 (03): : 479 - 497
  • [5] LOCAL AND GLOBAL EXISTENCE OF SOLUTIONS OF THE GINZBURG-LANDAU TYPE EQUATIONS
    Zhou Fujun
    Cui Shangbin
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2007, 20 (03): : 220 - 246
  • [6] Existence and decay estimates of solutions to complex Ginzburg-Landau type equations
    Shimotsuma, Daisuke
    Yokota, Tomomi
    Yoshii, Kentarou
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (03) : 3119 - 3149
  • [7] Landau-Ginzburg type equations in the subcritical case
    Hayashi, N
    Kaikina, EI
    Naumkin, PI
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2003, 5 (01) : 127 - 145
  • [8] Global existence and regularity of solutions for complex Ginzburg-Landau equations
    Descombes, S
    Moussaoui, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (03): : 189 - 192
  • [9] Global existence and regularity of solutions for complex Ginzburg-Landau equations
    Descombes, S
    Moussaoui, M
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2000, 3B (01): : 193 - 211
  • [10] Small Landau-Ginzburg theories
    Sean M. Gholson
    Ilarion V. Melnikov
    Journal of High Energy Physics, 2019