Flower-like carbon with embedded silicon nano particles as an anode material for Li-ion batteries

被引:18
作者
Zhang, Hui [1 ,2 ,4 ]
Xu, Hui [1 ,2 ,4 ]
Jin, Hong [1 ,2 ,4 ]
Li, Chao [2 ,4 ]
Bai, Yu [1 ,2 ,4 ]
Lian, Kun [1 ,2 ,3 ,4 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Mech Behav Mat, Xian 710049, Shanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Suzhou Res Inst, Suzhou 215123, Peoples R China
[3] Suzhou Guanjie Nanoantibacterial Coating Technol, Suzhou 215123, Peoples R China
[4] Xi An Jiao Tong Univ, Sch Nanosci & Nanoengn Suzhou, Suzhou 215123, Peoples R China
关键词
LITHIUM-STORAGE; HIGH-CAPACITY; PERFORMANCE; ELECTRODES; NANOPARTICLES; NANOWIRES; GRAPHENE; LITHIATION; TEMPLATE; FRACTURE;
D O I
10.1039/c7ra03576d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A novel 3-dimensional (3D) flower-like silicon/carbon composite was synthesized through spray drying method by using NaCl as the sacrificial reagent and was evaluated as an anode material for lithium ion batteries. This composite is composed of silicon nanoparticles distributed in the flower-like carbon framework. Cycling test results showed that, serving as the anode material, the composite achieved excellent capacity values of 1323 mA h g(-1) at C/ 20 (1C = 4200 mA g(-1)) after 100 cycles and 985 mA h g(-1) at C/2 after 200 cycles, respectively. The enhancement of electrode stability, compared to the conventional silicon anode made of bare silicon nano particles, is attributed to the unique flower-like 3D structure of the composite, which helps to maintain the mechanical stability of the electrode, and therefore maintains better electrical contact between the anode material and the current collector.
引用
收藏
页码:30032 / 30037
页数:6
相关论文
共 38 条
[1]   Developing lithium ion battery silicon/cobalt core-shell electrodes for enhanced electrochemical properties [J].
Cetinkaya, Tugrul ;
Uysal, Mehmet ;
Guler, Mehmet O. ;
Akbulut, Hatem .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (36) :21405-21413
[2]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[3]   Silicon Nanowire Degradation and Stabilization during Lithium Cycling by SEI Layer Formation [J].
Cho, Jeong-Hyun ;
Picraux, S. Tom .
NANO LETTERS, 2014, 14 (06) :3088-3095
[4]   Scalable Fracture-free SiOC Glass Coating for Robust Silicon Nanoparticle Anodes in Lithium Secondary Batteries [J].
Choi, Sunghun ;
Jung, Dae Soo ;
Choi, Jang Wook .
NANO LETTERS, 2014, 14 (12) :7120-7125
[5]   Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes [J].
Cui, Li-Feng ;
Ruffo, Riccardo ;
Chan, Candace K. ;
Peng, Hailin ;
Cui, Yi .
NANO LETTERS, 2009, 9 (01) :491-495
[6]   SiO2-confined silicon/carbon nanofiber composites as an anode for lithium-ion batteries [J].
Dirican, Mahmut ;
Lu, Yao ;
Fu, Kun ;
Kizil, Huseyin ;
Zhang, Xiangwu .
RSC ADVANCES, 2015, 5 (44) :34744-34751
[7]   Deformations in Si-Li Anodes Upon Electrochemical Alloying in Nano-Confined Space [J].
Hertzberg, Benjamin ;
Alexeev, Alexander ;
Yushin, Gleb .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (25) :8548-+
[8]   Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries [J].
Hu, Yong-Sheng ;
Demir-Cakan, Rezan ;
Titirici, Maria-Magdalena ;
Mueller, Jens-Oliver ;
Schloegl, Robert ;
Antonietti, Markus ;
Maier, Joachim .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (09) :1645-1649
[9]   Electrospun Core-Shell Fibers for Robust Silicon Nanoparticle-Based Lithium Ion Battery Anodes [J].
Hwang, Tae Hoon ;
Lee, Yong Min ;
Kong, Byung-Seon ;
Seo, Jin-Seok ;
Choi, Jang Wook .
NANO LETTERS, 2012, 12 (02) :802-807
[10]   Spray Drying Method for Large-Scale and High-Performance Silicon Negative Electrodes in Li-Ion Batteries [J].
Jung, Dae Soo ;
Hwang, Tae Hoon ;
Park, Seung Bin ;
Choi, Jang Wook .
NANO LETTERS, 2013, 13 (05) :2092-2097