ROS in Cancer: The Burning Question

被引:402
作者
Chio, Iok In Christine [1 ,2 ]
Tuveson, David A. [1 ,2 ]
机构
[1] Cold Spring Harbor Lab, POB 100, Cold Spring Harbor, NY 11724 USA
[2] Lustgarten Fdn, Pancreat Canc Res Lab, Cold Spring Harbor, NY 11724 USA
关键词
MITOCHONDRIAL INTERMEMBRANE SPACE; DISULFIDE BOND FORMATION; CYSTEINE-SULFINIC ACID; TUMOR-SUPPRESSOR PTEN; OXYGEN-FREE-RADICALS; OXIDATIVE STRESS; PROSTATE-CANCER; HYDROGEN-PEROXIDE; THIOL OXIDATION; CELL-DEATH;
D O I
10.1016/j.molmed.2017.03.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An unanswered question in human health is whether antioxidation prevents or promotes cancer. Antioxidation has historically been viewed as chemopreventive, but emerging evidence suggests that antioxidants may be supportive of neoplasia. We posit this contention to be rooted in the fact that ROS do not operate as one single biochemical entity, but as diverse secondary messengers in cancer cells. This cautions against therapeutic strategies to increase ROS at a global level. To leverage redox alterations towards the development of effective therapies necessitates the application of biophysical and biochemical approaches to define redox dynamics and to functionally elucidate specific oxidative modifications in cancer versus normal cells. An improved understanding of the sophisticated workings of redox biology is imperative to defeating cancer.
引用
收藏
页码:411 / 429
页数:19
相关论文
共 214 条
[1]   Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation [J].
Abramov, Andrey Y. ;
Scorziello, Antonella ;
Duchen, Michael R. .
JOURNAL OF NEUROSCIENCE, 2007, 27 (05) :1129-1138
[2]   Bioenergetics and the formation of mitochondrial reactive oxygen species [J].
Adam-Vizi, Vera ;
Chinopoulos, Christos .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2006, 27 (12) :639-645
[3]   In Vivo Mapping of Hydrogen Peroxide and Oxidized Glutathione Reveals Chemical and Regional Specificity of Redox Homeostasis [J].
Albrecht, Simone C. ;
Barata, Ana Gomes ;
Grosshans, Joerg ;
Teleman, Aurelio A. ;
Dick, Tobias P. .
CELL METABOLISM, 2011, 14 (06) :819-829
[4]   OXIDANTS, ANTIOXIDANTS, AND THE DEGENERATIVE DISEASES OF AGING [J].
AMES, BN ;
SHIGENAGA, MK ;
HAGEN, TM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :7915-7922
[5]   Oxidative stress in neurodegeneration: cause or consequence? [J].
Andersen, JK .
NATURE MEDICINE, 2004, 10 (07) :S18-S25
[6]   THE ANTIOXIDANT ACTION OF N-ACETYLCYSTEINE - ITS REACTION WITH HYDROGEN-PEROXIDE, HYDROXYL RADICAL, SUPEROXIDE, AND HYPOCHLOROUS ACID [J].
ARUOMA, OI ;
HALLIWELL, B ;
HOEY, BM ;
BUTLER, J .
FREE RADICAL BIOLOGY AND MEDICINE, 1989, 6 (06) :593-597
[7]   The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology [J].
Bedard, Karen ;
Krause, Karl-Heinz .
PHYSIOLOGICAL REVIEWS, 2007, 87 (01) :245-313
[8]   TIGAR, a p53-inducible regulator of glycolysis and apoptosis [J].
Bensaad, Karim ;
Tsuruta, Atsushi ;
Selak, Mary A. ;
Calvo Vidal, M. Nieves ;
Nakano, Katsunori ;
Bartrons, Ramon ;
Gottlieb, Eyal ;
Vousden, Karen H. .
CELL, 2006, 126 (01) :107-120
[9]   Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system [J].
Berndt, Carsten ;
Lillig, Christopher Horst ;
Holmgren, Arne .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2007, 292 (03) :H1227-H1236
[10]   Membrane transport of hydrogen peroxide [J].
Bienert, Gerd P. ;
Schjoerring, Jan K. ;
Jahn, Thomas P. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2006, 1758 (08) :994-1003