Sobolev error estimates and a priori parameter selection for semi-discrete Tikhonov regularization

被引:26
|
作者
Krebs, J. [1 ]
Louis, A. K. [1 ]
Wendland, H. [2 ]
机构
[1] Univ Saarland, Inst Angew Math, D-66123 Saarbrucken, Germany
[2] Univ Oxford, Inst Math, Oxford OX1 3LB, England
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2009年 / 17卷 / 09期
关键词
Ill-posed problems; regularization; generalized recovery; reproducing kernel Hilbert spaces; learning theory; noisy data; LINEAR INVERSE PROBLEMS; SMOOTHING NOISY DATA; MESHLESS COLLOCATION; DISCRETE-DATA; INTERPOLATION; EQUATIONS;
D O I
10.1515/JIIP.2009.050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this paper is to investigate the Tikhonov-Phillips method for semi-discrete linear ill-posed problems in order to determine tight error bounds and to obtain a good parameter choice. We consider the equation Af = g, where the operator A is known, noisy discrete data g(1)(delta),...,g(n)(delta) with g(x(i)) approximate to g(i)(delta) can be observed and a solution f* is sought. Assuming that f* is an element of a Sobolev space, we use the well-known theory of optimal recovery in Hilbert spaces for the reconstruction process. We then provide L-2-error estimates in terms of the data density and derive an a priori selection for the regularization parameter, which guarantees an optimal compromise between approximation and stability. Finally, we illustrate the parameter selection with a simple example.
引用
收藏
页码:845 / 869
页数:25
相关论文
共 50 条