Insulin-resistance (IR) impairs agonist-induced relaxation in cerebral arteries, but little is known about its effect on constrictor mechanisms. We examined the vascular responses of the basilar artery ( BA) and its side branches in anesthetized Zucker lean (ZL) and IR Zucker obese (ZO) rats using a cranial window technique. Endothelin-1 (ET-1) constricted the BAs in both the ZL and ZO rats, but there was no significant difference between the two groups (ZL:36 +/- 8%; ZO: 33 +/- 3% at 10(-8) M). Inhibition of the ETA receptors by BQ-123 slightly increased the diameters of the BAs, with no difference shown between the ZL (6 +/- 1%) and ZO (5 +/- 3%) rats. Expressions of the ETA receptors and ET-1 mRNA examined by immunoblot analysis and RT-PCR, respectively, were also similar in the ZL and ZO groups. Phorbol 12,13-dibutyrate (PDBu), an activator of protein kinase C (PKC), and the thromboxane A(2) (TxA(2)) mimetic U-46619 constricted the BAs, but similarly to ET-1, there was no significant difference between the ZL and ZO groups (10(-6) M PDBu:ZL: 33 +/- 2%; ZO: 32 +/- 4%; and 10(-7) M U-46619: ZL: 23 +/- 1%; ZO: 19 +/- 2%). Inhibition of Rho-kinase with Y-27632 induced dilation of the BAs, and these responses were also comparable in the ZL and ZO rats (ZL: 39 +/- 4%; ZO: 38 +/- 2% at 10(-5) M). In contrast, nitric oxide-dependent relaxation to bradykinin was significantly reduced in the ZO rats (10(-6) M: 10 +/- 3%) compared with ZLs (29 +/- 7%, P < 0.01). These findings indicate that vasoconstrictor responses of the BA mediated by ET-1, TxA(2), PKC, and Rho-kinase are not affected by IR.