Interpretable Deep Learning for Monitoring Combustion Instability

被引:3
作者
Gangopadhyay, Tryambak [1 ]
Tan, Sin Yong [1 ]
LoCurto, Anthony [1 ]
Michael, James B. [1 ]
Sarkar, Soumik [1 ]
机构
[1] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Deep Learning; Attention; LSTM; 3D CNN; Detection; DECOMPOSITION;
D O I
10.1016/j.ifacol.2020.12.839
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Transitions from stable to unstable states occurring in dynamical systems can be sudden leading to catastrophic failure and huge revenue loss. For detecting these transitions during operation, it is of utmost importance to develop an accurate data-driven framework that is robust enough to classify stable and unstable scenarios. In this paper, we propose deep learning frameworks that show remarkable accuracy in the classification task of combustion instability on carefully designed diverse training and test sets. We train our model with data from a laboratory-scale combustion system showing stable and unstable states. The dataset is multimodal with correlated data of hi-speed video and acoustic signals. We develop a labeling mechanism for sequences by implementing Kullback-Leibler Divergence on the time-series data. We develop deep learning frameworks using 3D Convolutional Neural Network and Long Short Term Memory network for this classification task. To go beyond the accuracy and to gain insights into the predictions, we incorporate attention mechanism across the time-steps. This aids in understanding the time-periods which contribute significantly to the prediction outcome. We validate the insights from a domain knowledge perspective. By exploring inside the accurate black-box models, this framework can be used for the development of better detection frameworks in different dynamical systems. Copyright (C) 2020 The Authors.
引用
收藏
页码:832 / 837
页数:6
相关论文
共 30 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] Akintayo Adedotun., 2016, Int J Progn Health Manage, V7, P1
  • [3] Bandanau D., 2014, arXiv preprint arXiv:1409. 0473
  • [4] LEARNING LONG-TERM DEPENDENCIES WITH GRADIENT DESCENT IS DIFFICULT
    BENGIO, Y
    SIMARD, P
    FRASCONI, P
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02): : 157 - 166
  • [5] Bengio Yoshua., 1991, Artificial neural networks and their application to sequence recogni- tion
  • [6] THE PROPER ORTHOGONAL DECOMPOSITION IN THE ANALYSIS OF TURBULENT FLOWS
    BERKOOZ, G
    HOLMES, P
    LUMLEY, JL
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 1993, 25 : 539 - 575
  • [7] Chakravarthy S.R., 2016, DYNAMIC SYSTEMS CONT
  • [8] Cho Kyunghyun, 2014, Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, DOI [10.3115/v1/w14-4012, DOI 10.3115/V1/W14-4012]
  • [9] Chollet F., 2015, KERAS
  • [10] Nonlinear self-excited oscillations of a ducted flame
    Dowling, AP
    [J]. JOURNAL OF FLUID MECHANICS, 1997, 346 : 271 - 290