A deep learning framework to predict binding preference of RNA constituents on protein surface

被引:79
作者
Lam, Jordy Homing [1 ,2 ]
Li, Yu [1 ]
Zhu, Lizhe [2 ,3 ]
Umarov, Ramzan [1 ]
Jiang, Hanlun [4 ,5 ]
Heliou, Amelie [6 ]
Sheong, Fu Kit [2 ]
Liu, Tianyun [7 ,8 ,9 ]
Long, Yongkang [1 ,10 ]
Li, Yunfei [10 ]
Fang, Liang [10 ]
Altman, Russ B. [7 ,8 ,9 ]
Chen, Wei [10 ]
Huang, Xuhui [2 ,11 ,12 ,13 ,14 ,15 ]
Gao, Xin [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Computat Biosci Res Ctr, Comp Elect & Math Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[2] Hong Kong Univ Sci & Technol, Dept Chem, Hong Kong, Peoples R China
[3] Chinese Univ Hong Kong Shenzhen, Sch Life & Hlth Sci, Warshel Inst Computat Biol, Shenzhen 518172, Guangdong, Peoples R China
[4] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[5] Univ Washington, Inst Prot Design, Seattle, WA 98195 USA
[6] Ecole Polytech, Lab Informat, Dept Comp Sci, Palaiseau, France
[7] Stanford Univ, Dept Med, Stanford, CA 94305 USA
[8] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
[9] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[10] Southern Univ Sci & Technol, Dept Biol, Shenzhen 518055, Guangdong, Peoples R China
[11] Hong Kong Univ Sci & Technol, Div Biomed Engn, Hong Kong, Peoples R China
[12] Hong Kong Univ Sci & Technol, State Key Lab Mol Neurosci, Hong Kong, Peoples R China
[13] Hong Kong Univ Sci & Technol, Hong Kong Branch, Chinese Natl Engn Res Ctr Tissue Restorat & Recon, Hong Kong, Peoples R China
[14] Hong Kong Univ Sci & Technol, Inst Adv Study, Hong Kong, Peoples R China
[15] HKUST Shenzhen Res Inst, Hitech Pk, Shenzhen 518057, Peoples R China
关键词
HUMAN ARGONAUTE-2; STRUCTURAL BASIS; RECOGNITION; DNA; TARGETS; SITES; SPECIFICITIES; MECHANISM; INSIGHT;
D O I
10.1038/s41467-019-12920-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Protein-RNA interaction plays important roles in post-transcriptional regulation. However, the task of predicting these interactions given a protein structure is difficult. Here we show that, by leveraging a deep learning model NucleicNet, attributes such as binding preference of RNA backbone constituents and different bases can be predicted from local physicochemical characteristics of protein structure surface. On a diverse set of challenging RNA-binding proteins, including Fem-3-binding-factor 2, Argonaute 2 and Ribonuclease III, NucleicNet can accurately recover interaction modes discovered by structural biology experiments. Furthermore, we show that, without seeing any in vitro or in vivo assay data, NucleicNet can still achieve consistency with experiments, including RNA compete, Immunoprecipitation Assay, and siRNA Knockdown Benchmark. NucleicNet can thus serve to provide quantitative fitness of RNA sequences for given binding pockets or to predict potential binding pockets and binding RNAs for previously unknown RNA binding proteins.
引用
收藏
页数:13
相关论文
共 59 条
[1]   Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning [J].
Alipanahi, Babak ;
Delong, Andrew ;
Weirauch, Matthew T. ;
Frey, Brendan J. .
NATURE BIOTECHNOLOGY, 2015, 33 (08) :831-+
[2]   Structures of the human and Drosophila 80S ribosome [J].
Anger, Andreas M. ;
Armache, Jean-Paul ;
Berninghausen, Otto ;
Habeck, Michael ;
Subklewe, Marion ;
Wilson, Daniel N. ;
Beckmann, Roland .
NATURE, 2013, 497 (7447) :80-+
[3]  
[Anonymous], 2015, ARXIV PREPRINT ARXIV
[4]  
[Anonymous], 2016, ARXIV160305027CS
[5]  
[Anonymous], ADV NEURAL INFORM PR
[6]  
[Anonymous], 2007, ICML
[7]   Binding specificity and mRNA targets of a C-elegans PUF protein, FBF-1 [J].
Bernstein, D ;
Hook, B ;
Hajarnavis, A ;
Opperman, L ;
Wickens, M .
RNA, 2005, 11 (04) :447-458
[8]   Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites [J].
Bowman, Gregory R. ;
Geissler, Phillip L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (29) :11681-11686
[9]   FINDING ALL CLIQUES OF AN UNDIRECTED GRAPH [H] [J].
BRON, C ;
KERBOSCH, J .
COMMUNICATIONS OF THE ACM, 1973, 16 (09) :575-577
[10]   CONSERVED STRUCTURES AND DIVERSITY OF FUNCTIONS OF RNA-BINDING PROTEINS [J].
BURD, CG ;
DREYFUSS, G .
SCIENCE, 1994, 265 (5172) :615-621