A novel feature extraction method of eddy current testing for defect detection based on machine learning

被引:38
作者
Yin, Liyuan [1 ]
Ye, Bo [1 ]
Zhang, Zhaolin [1 ]
Tao, Yang [2 ]
Xu, Hanyang [2 ]
Avila, Jorge R. Salas [2 ]
Yin, Wuliang [2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Yunnan, Peoples R China
[2] Univ Manchester, Sch Elect & Elect Engn, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
Eddy current testing; Lissajous figure; Feature extraction; Machine learning; CLASSIFICATION; IDENTIFICATION; ALGORITHM; NOISE;
D O I
10.1016/j.ndteint.2019.04.005
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In eddy current testing, the trajectory of the impedance data due to a defect is presented as a Lissajous curve (LC) in the complex plane. This paper proposes a novel analytical model for describing a LC. Further, a new feature extraction method is implemented which automatically computes four geometric features (amplitude, width, angle and symmetry) from Lissajous figures. In addition, six machine learning-based classifiers are used for automatic defect identification based on these features. High detection rates are achieved for both the simulated and experimental data, which demonstrates the flexibility of the analytical model and the validity of the methodology.
引用
收藏
页数:7
相关论文
共 33 条
[21]   NDT techniques for railroad wheel and gauge corner inspection [J].
Pohl, R ;
Erhard, A ;
Montag, HJ ;
Thomas, HM ;
Wüstenberg, H .
NDT & E INTERNATIONAL, 2004, 37 (02) :89-94
[22]   Ensemble-based classifiers [J].
Rokach, Lior .
ARTIFICIAL INTELLIGENCE REVIEW, 2010, 33 (1-2) :1-39
[23]   Defect Characterization With Eddy Current Testing Using Nonlinear-Regression Feature Extraction and Artificial Neural Networks [J].
Rosado, Luis S. ;
Janeiro, Fernando M. ;
Ramos, Pedro M. ;
Piedade, Moises .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2013, 62 (05) :1207-1214
[24]  
RUIZ EV, 1986, PATTERN RECOGN LETT, V4, P145
[25]  
Ryszard Sikora, 1997, STUD APPL ELECTROMAG, P213
[26]  
Snoek J., 2012, Adv Neural Inf Process Syst, V25
[27]   A review of non-destructive techniques for the detection of creep damage in power plant steels [J].
Sposito, G. ;
Ward, C. ;
Cawley, P. ;
Nagy, P. B. ;
Scruby, C. .
NDT & E INTERNATIONAL, 2010, 43 (07) :555-567
[28]   A Very-Low-Frequency Electromagnetic Inductive Sensor System for Workpiece Recognition Using the Magnetic Polarizability Tensor [J].
Tao, Yang ;
Yin, Wuliang ;
Zhang, Wenbo ;
Zhao, Yifei ;
Ktistis, Christos ;
Peyton, Anthony J. .
IEEE SENSORS JOURNAL, 2017, 17 (09) :2703-2712
[29]   The Advance Experience of Foreign Top-level Think Tanks and its Enlightment to the Construction of Chinese University Think-Tank [J].
Tao, Yong ;
Li, Qiushi ;
Zhao, Gang ;
Zhao, Wen .
2016 3RD INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND APPLICATIONS (ICIEA 2016), 2016, 68
[30]   Wavelet-based PCA defect classification and quantification for pulsed eddy current NDT [J].
Tian, GY ;
Sophian, A ;
Taylor, D ;
Rudlin, J .
IEE PROCEEDINGS-SCIENCE MEASUREMENT AND TECHNOLOGY, 2005, 152 (04) :141-148