A novel feature extraction method of eddy current testing for defect detection based on machine learning

被引:38
作者
Yin, Liyuan [1 ]
Ye, Bo [1 ]
Zhang, Zhaolin [1 ]
Tao, Yang [2 ]
Xu, Hanyang [2 ]
Avila, Jorge R. Salas [2 ]
Yin, Wuliang [2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Yunnan, Peoples R China
[2] Univ Manchester, Sch Elect & Elect Engn, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
Eddy current testing; Lissajous figure; Feature extraction; Machine learning; CLASSIFICATION; IDENTIFICATION; ALGORITHM; NOISE;
D O I
10.1016/j.ndteint.2019.04.005
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In eddy current testing, the trajectory of the impedance data due to a defect is presented as a Lissajous curve (LC) in the complex plane. This paper proposes a novel analytical model for describing a LC. Further, a new feature extraction method is implemented which automatically computes four geometric features (amplitude, width, angle and symmetry) from Lissajous figures. In addition, six machine learning-based classifiers are used for automatic defect identification based on these features. High detection rates are achieved for both the simulated and experimental data, which demonstrates the flexibility of the analytical model and the validity of the methodology.
引用
收藏
页数:7
相关论文
共 33 条
[1]   Crack shape reconstruction in eddy current testing using machine learning systems for regression [J].
Bernieri, Andrea ;
Ferrigno, Luigi ;
Laracca, Marco ;
Molinara, Mario .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2008, 57 (09) :1958-1968
[2]  
Betta G, 2015, 2015 2ND IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AEROSPACE (METROAEROSPACE), P341, DOI 10.1109/MetroAeroSpace.2015.7180679
[3]   Estimation of micro-crack lengths using eddy current C-scan images and neural-wavelet transform [J].
Bodruzzaman, Mohammad ;
Zein-Sabatto, Saleh .
PROCEEDINGS IEEE SOUTHEASTCON 2008, VOLS 1 AND 2, 2008, :551-556
[4]   Simultaneous Multiparameter Measurement in Pulsed Eddy Current Steam Generator Data Using Artificial Neural Networks [J].
Buck, Jeremy A. ;
Underhill, Peter Ross ;
Morelli, Jordan E. ;
Krause, Thomas W. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2016, 65 (03) :672-679
[5]   Flaws identification using an approximation function and artificial neural networks [J].
Chady, Tomasz ;
Lopato, Przemyslaw .
IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (04) :1769-1772
[6]   Feature extraction and selection for defect classification of pulsed eddy current NDT [J].
Chen, Tianlu ;
Tian, Gui Yun ;
Sophian, Ali ;
Que, Pei Wen .
NDT & E INTERNATIONAL, 2008, 41 (06) :467-476
[7]   Fast Eddy Current Testing Defect Classification Using Lissajous Figures [J].
D'Angelo, Gianni ;
Laracca, Marco ;
Rampone, Salvatore ;
Betta, Giovanni .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2018, 67 (04) :821-830
[8]  
D'Angelo G, 2016, 2016 IEEE METROLOGY FOR AEROSPACE (METROAEROSPACE), P280, DOI 10.1109/MetroAeroSpace.2016.7573227
[9]  
D'Angelo G, 2015, 2015 2ND IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AEROSPACE (METROAEROSPACE), P406, DOI 10.1109/MetroAeroSpace.2015.7180691
[10]  
EDGAR O, 1997, SUPPORT VECTOR MACHI