The operator method for solving the fractional Fokker-Planck equation

被引:3
作者
Elwakil, SA [1 ]
Zahran, MA [1 ]
Abdou, MA [1 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Phys, Theoret Res Grp, Mansoura, Egypt
关键词
fractional Fokker-Planck equation; operator method; anomalous transport;
D O I
10.1016/S0022-4073(02)00164-4
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The operator method has been used to solve the fractional Fokker-Planck equation (FPE) which recently formulated as a model for the anomalous transport process. Two classes of special interest of fractional F-P equations coming from plasma physics and charged particle transport problem has been considered. It is shown that the mean square-displacement [x(2)(t)] satisfy the universal power law characterized the anomalous time evolution i.e. [x(2)(t)](t) over tilde (gamma), 0 < gamma < 1. (C) 2003 Published by Elsevier Science Ltd.
引用
收藏
页码:317 / 327
页数:11
相关论文
共 28 条
  • [1] [Anonymous], 1983, FRACTAL GEOMETRY NAT
  • [2] ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS
    BOUCHAUD, JP
    GEORGES, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5): : 127 - 293
  • [3] Fractional (space-time) Fokker-Planck equation
    El-Wakil, SA
    Elhanbaly, A
    Zahran, MA
    [J]. CHAOS SOLITONS & FRACTALS, 2001, 12 (06) : 1035 - 1040
  • [4] Fractional Fokker-Planck equation
    El-Wakil, SA
    Zahran, MA
    [J]. CHAOS SOLITONS & FRACTALS, 2000, 11 (05) : 791 - 798
  • [5] Fractional integral representation of master equation
    Elwakil, SA
    Zahran, MA
    [J]. CHAOS SOLITONS & FRACTALS, 1999, 10 (09) : 1545 - 1548
  • [6] ENGLEMAN R, 1986, FRAGMENTATION FORM F
  • [7] ANALYTIC SOLUTION OF THE SPENCER-LEWIS ANGULAR-SPATIAL MOMENTS EQUATIONS
    FILIPPONE, WL
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 1986, 92 (03) : 421 - 439
  • [8] Gardiner C. W., 1985, HDB STOCHASTIC METHO, V3
  • [9] Gradshtyen I. S., 1980, TABLE INTEGRALS SERI
  • [10] GUYON E, 1993, INSTABILITIES NONEQU