On inequalities for eigenvalues of 2 x 2 matrices with Schatten-von Neumann entries

被引:0
作者
Gil, Michael [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, POB 653, IL-84105 Beer Sheva, Israel
关键词
Operator matrix; operator pencil; eigenvalues; Schatten-von Neumann operators; OPERATOR; SPECTRA;
D O I
10.2989/16073606.2015.1031849
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let SNr (r >= 1) denote the Schatten-von Neumann ideal of compact operators in a separable Hilbert space. For the block matrix [GRAPHICS] the inequality (Sigma(infinity)(k=1)vertical bar lambda k(A)vertical bar(2p))(1/(2p)) <= (N-2p(2p)(A(11)) + N-2p(2p)(A(22)))(1/(2p)) + N-2p(2p)(A(21)))(1/(2p)) (p = 2; 3;...) is proved, where (k)(A) (k = 1; 2;...) are the eigenvalues of A and N-r(.) is the norm in SNr. Moreover, let P(z) = z(2)I + Bz + C (z C) with B SN2p, C SNp. By z(k)(P) (k = 1; 2;...) the characteristic values of the pencil P are denoted. It is shown that Sigma(infinity)(k=1)vertical bar z(k)(P)vertical bar(2p) <= (N-2p(B) + 2(1/(2p)) Np-1/2 (C))(2p) In the case p = 1, sharper results are established. In addition, it is derived that Sigma(infinity)(k=1)vertical bar Im lambda(k)(A)vertical bar(2) <= (N-2(2)(A(I)) -1/2(N-2(A(12))) - N-2(A(21)))(2) (A is an element of SN2; A(I) = 1/2i(A -A*)).
引用
收藏
页码:145 / 152
页数:8
相关论文
共 45 条
  • [21] Numerical Radius Inequalities for Certain 2 × 2 Operator Matrices
    Omar Hirzallah
    Fuad Kittaneh
    Khalid Shebrawi
    [J]. Integral Equations and Operator Theory, 2011, 71 : 129 - 147
  • [22] SOME GENERAL NUMERICAL RADIUS INEQUALITIES FOR THE OFF-DIAGONAL PARTS OF 2 x 2 OPERATOR MATRICES
    Bani-Domi, Watheq
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2015, (35): : 433 - 442
  • [23] Main Properties of the Faddeev Equation for 2 x 2 Operator Matrices
    Rasulov, T. H.
    Dilmurodov, E. B.
    [J]. RUSSIAN MATHEMATICS, 2023, 67 (12) : 47 - 52
  • [24] An extension of several essential numerical radius inequalities of 2x2 off-diagonal operator matrices
    Al-Dolat, Mohammed
    Jaradat, Imad
    Baleanu, Dumitru
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01):
  • [25] Weylness of 2 x 2 operator matrices
    Wu, Xiufeng
    Huang, Junjie
    Chen, Alatancang
    [J]. MATHEMATISCHE NACHRICHTEN, 2018, 291 (01) : 187 - 203
  • [26] On A-Numerical Radius Inequalities for 2 2 Operator Matrices-II
    Sahoo, Satyajit
    [J]. FILOMAT, 2021, 35 (15) : 5237 - 5252
  • [27] Operator interpretation of resonance arising in spectral problems for 2 x 2 operator matrices
    Mennicken, R
    Motovilov, AK
    [J]. MATHEMATISCHE NACHRICHTEN, 1999, 201 : 117 - 181
  • [28] Threshold analysis for a family of 2 x 2 operator matrices
    Rasulov, T. H.
    Dilmurodov, E. B.
    [J]. NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2019, 10 (06): : 616 - 622
  • [29] Local Spectral Property of 2 x 2 Operator Matrices
    Ko, Eungil
    [J]. FILOMAT, 2019, 33 (07) : 1845 - 1854
  • [30] The semi-Fredholmness and property (ω) for 2x2 upper triangular operator matrices
    Dong, Jiong
    Cao, Xiaohong
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (15) : 2489 - 2503