Allosteric Inhibition of Epac COMPUTATIONAL MODELING AND EXPERIMENTAL VALIDATION TO IDENTIFY ALLOSTERIC SITES AND INHIBITORS

被引:24
作者
Brown, Loren M. [1 ]
Rogers, Kathleen E. [1 ]
Aroonsakool, Nakon [1 ]
McCammon, J. Andrew [1 ,2 ,4 ]
Insel, Paul A. [1 ,3 ]
机构
[1] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Howard Hughes Med Inst, La Jolla, CA 92093 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
DRUGGABLE HOT-SPOTS; GENE-EXPRESSION; CAMP EPAC; ACTIVATION; IDENTIFICATION; PROTEINS; DYNAMICS; RAP1; MECHANISM; COMPLEX;
D O I
10.1074/jbc.M114.569319
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Epac, a guanine nucleotide exchange factor for the low molecular weight G protein Rap, is an effector of cAMP signaling and has been implicated to have roles in numerous diseases, including diabetes mellitus, heart failure, and cancer. We used a computational molecular modeling approach to predict potential binding sites for allosteric modulators of Epac and to identify molecules that might bind to these regions. This approach revealed that the conserved hinge region of the cyclic nucleotide-binding domain of Epac1 is a potentially druggable region of the protein. Using a bioluminescence resonance energy transfer-based assay (CAMYEL, cAMP sensor using YFP-Epac-Rluc), we assessed the predicted compounds for their ability to bind Epac and modulate its activity. We identified a thiobarbituric acid derivative, 5376753, that allosterically inhibits Epac activity and used Swiss 3T3 and HEK293 cells to test the ability of this compound to modulate the activity of Epac and PKA, as determined by Rap1 activity and vasodilator-stimulated phosphoprotein phosphorylation, respectively. Compound 5376753 selectively inhibited Epac in biochemical and cell migration studies. These results document the utility of a computational approach to identify a domain for allosteric regulation of Epac and a novel compound that prevents the activation of Epac1 by cAMP.
引用
收藏
页码:29148 / 29157
页数:10
相关论文
共 44 条
[1]  
[Anonymous], 2013, SCHROD SUIT 2013 PRO
[2]  
[Anonymous], SCHROD REL 2013 3 LI
[3]  
[Anonymous], 2014, AMBER
[4]  
[Anonymous], SCHROD REL 2014 1 MA
[5]   Epac increases melanoma cell migration by a heparan sulfate-related mechanism [J].
Baljinnyam, Erdene ;
Iwatsubo, Kousaku ;
Kurotani, Reiko ;
Wang, Xu ;
Ulucan, Coskun ;
Iwatsubo, Mizuka ;
Lagunoff, David ;
Ishikawa, Yoshihiro .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2009, 297 (04) :C802-C813
[6]   Epac: a new cAMP target and new avenues in cAMP research [J].
Bos, JL .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2003, 4 (09) :733-738
[7]   Fragment-based identification of druggable 'hot spots' of proteins using Fourier domain correlation techniques [J].
Brenke, Ryan ;
Kozakov, Dima ;
Chuang, Gwo-Yu ;
Beglov, Dmitri ;
Hall, David ;
Landon, Melissa R. ;
Mattos, Carla ;
Vajda, Sandor .
BIOINFORMATICS, 2009, 25 (05) :621-627
[8]   Identification and Validation of Modulators of Exchange Protein Activated by cAMP (Epac) Activity [J].
Brown, Loren M. ;
Rogers, Kathleen E. ;
McCammon, J. Andrew ;
Insel, Paul A. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (12) :8217-8230
[9]   The GROMOS software for biomolecular simulation:: GROMOS05 [J].
Christen, M ;
Hünenberger, PH ;
Bakowies, D ;
Baron, R ;
Bürgi, R ;
Geerke, DP ;
Heinz, TN ;
Kastenholz, MA ;
Kräutler, V ;
Oostenbrink, C ;
Peter, C ;
Trzesniak, D ;
Van Gunsteren, WF .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1719-1751
[10]   cAMP regulates DEP domain-mediated binding of the guanine nucleotide exchange factor Epac1 to phosphatidic acid at the plasma membrane [J].
Consonni, Sarah V. ;
Gloerich, Martijn ;
Spanjaard, Emma ;
Bos, Johannes L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (10) :3814-3819