QUASICONFORMAL EXTENSION OF MEROMORPHIC FUNCTIONS WITH NONZERO POLE

被引:10
作者
Bhowmik, B. [1 ]
Satpati, G. [1 ]
Sugawa, T. [2 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Math, Kharagpur 721302, W Bengal, India
[2] Tohoku Univ, Grad Sch Informat Sci, Aoba Ku, Sendai, Miyagi 9808579, Japan
关键词
Quasiconformal map; convolution;
D O I
10.1090/proc/12933
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we consider meromorphic univalent functions f(z) in the unit disc with a simple pole at z = p is an element of (0, 1) which have a k-quasiconformal extension to the extended complex plane (C) over cap, where 0 <= k < 1. We denote the class of such functions by Sigma(k)(p). We first prove an area theorem for functions in this class. Next, we derive a sufficient condition for meromorphic functions in the unit disc with a simple pole at z = p is an element of(0, 1) to belong to the class Sigma(k)(p). Finally, we give a convolution property for functions in the class Sigma(k)(p).
引用
收藏
页码:2593 / 2601
页数:9
相关论文
共 5 条
[1]  
CHICHRA PN, 1969, PROC CAMB PHILOS S-M, V66, P317
[2]   CONVOLUTION AND QUASICONFORMAL EXTENSION [J].
KRZYZ, JG .
COMMENTARII MATHEMATICI HELVETICI, 1976, 51 (01) :99-104
[3]  
Lehto O., 1987, GRADUATE TEXTS MATH, V109
[4]  
Lehto O., 1973, QUASICONFORMAL MAPPI, V126
[5]  
Lehto Olli, 1971, Ann. Acad. Sci. Fenn. Ser. A. I., V500, P10