Domination and upper domination of direct product graphs

被引:10
作者
Defant, Colin [1 ]
Iyer, Sumun [2 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Cornell Univ, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Domination number; Upper domination number; Direct product graph; Unitary Cayley graph; Jacobsthal's function; Balanced; Complete multipartite graph; UNITARY CAYLEY-GRAPHS; CONSECUTIVE PRIMES; LARGE GAPS;
D O I
10.1016/j.disc.2018.06.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X-z/nz denote the unitary Cayley graph of Z/nZ. We present results on the tightness of the known inequality gamma (X-z/nz) <= gamma(t)(X-z/nz) <= g(n), where gamma and gamma(t) denote the domination number and total domination number, respectively, and g is the arithmetic function known as Jacobsthal's function. In particular, we construct integers n with arbitrarily many distinct prime factors such that gamma(X-z/nz) <= gamma(t) (X-z/nz) <= g(n) - 1. We give lower bounds for the domination numbers of direct products of complete graphs and present a conjecture for the exact values of the upper domination numbers of direct products of balanced, complete multipartite graphs. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2742 / 2752
页数:11
相关论文
共 50 条
[41]   An upper bound for domination number of 5-regular graphs [J].
Xing, Hua-Ming ;
Sun, Liang ;
Chen, Xue-Gang .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2006, 56 (03) :1049-1061
[42]   On Clark and Suen bound-type results for k-domination and Roman domination of Cartesian product graphs [J].
Gonzalez Yero, Ismael .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (03) :522-526
[43]   Note on 2-rainbow domination and Roman domination in graphs [J].
Wu, Yunjian ;
Xing, Huaming .
APPLIED MATHEMATICS LETTERS, 2010, 23 (06) :706-709
[44]   On graphs with equal chromatic transversal domination and connected domination numbers [J].
Ayyaswamy, Singaraj Kulandaiswamy ;
Natarajan, Chidambaram ;
Venkatakrishnan, Yanamandram Balasubramanian .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 27 (04) :843-849
[45]   Bipartite graphs with close domination and k-domination numbers [J].
Ekinci, Gulnaz Boruzanli ;
Bujtas, Csilla .
OPEN MATHEMATICS, 2020, 18 :873-885
[46]   Connected domination in random graphs [J].
Gábor Bacsó ;
József Túri ;
Zsolt Tuza .
Indian Journal of Pure and Applied Mathematics, 2023, 54 :439-446
[47]   Transferable domination number of graphs [J].
Chang, Fei-Huang ;
Chia, Ma-Lian ;
Kuo, David ;
Deng, Wen ;
Liaw, Sheng-Chyang ;
Pan, Zhishi .
DISCRETE APPLIED MATHEMATICS, 2022, 313 :135-146
[48]   Resolving domination number of graphs [J].
Alfarisi, Ridho ;
Dafik ;
Kristiana, Arika Indah .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (06)
[49]   Domination in Cayley graphs: A survey [J].
Chelvam, T. Tamizh ;
Sivagami, M. .
AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2019, 16 (01) :27-40
[50]   Restricted domination parameters in graphs [J].
Wayne Goddard ;
Michael A. Henning .
Journal of Combinatorial Optimization, 2007, 13 :353-363