Domination and upper domination of direct product graphs

被引:10
作者
Defant, Colin [1 ]
Iyer, Sumun [2 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Cornell Univ, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Domination number; Upper domination number; Direct product graph; Unitary Cayley graph; Jacobsthal's function; Balanced; Complete multipartite graph; UNITARY CAYLEY-GRAPHS; CONSECUTIVE PRIMES; LARGE GAPS;
D O I
10.1016/j.disc.2018.06.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X-z/nz denote the unitary Cayley graph of Z/nZ. We present results on the tightness of the known inequality gamma (X-z/nz) <= gamma(t)(X-z/nz) <= g(n), where gamma and gamma(t) denote the domination number and total domination number, respectively, and g is the arithmetic function known as Jacobsthal's function. In particular, we construct integers n with arbitrarily many distinct prime factors such that gamma(X-z/nz) <= gamma(t) (X-z/nz) <= g(n) - 1. We give lower bounds for the domination numbers of direct products of complete graphs and present a conjecture for the exact values of the upper domination numbers of direct products of balanced, complete multipartite graphs. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2742 / 2752
页数:11
相关论文
共 50 条
[31]   Captive domination in graphs [J].
Al-Harere, Manal N. ;
Omran, Ahmed A. ;
Breesam, Athraa T. .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (06)
[32]   On α-Split Domination in Graphs [J].
Amutha, S. ;
Prabha, K. Suriya ;
Anbazhagan, N. ;
Gomathi, S. Sankara ;
Cangul, Ismail Naci .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2022, 92 (04) :593-597
[33]   INVERSE DOMINATION IN GRAPHS [J].
KULLI, VR ;
SIGARKANTI, SC .
NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 1991, 14 (12) :473-475
[34]   On domination in signed graphs [J].
Joseph, James ;
Joseph, Mayamma .
ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2023, 15 (01) :1-9
[35]   ON THE BALANCED DOMINATION OF GRAPHS [J].
Xu, Baogen ;
Sun, Wanting ;
Li, Shuchao ;
Li, Chunhua .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (04) :933-946
[36]   Domination in bipartite graphs [J].
Harant, Jochen ;
Rautenbach, Dieter .
DISCRETE MATHEMATICS, 2009, 309 (01) :113-122
[37]   On the balanced domination of graphs [J].
Baogen Xu ;
Wanting Sun ;
Shuchao Li ;
Chunhua Li .
Czechoslovak Mathematical Journal, 2021, 71 :933-946
[38]   ON ACCURATE DOMINATION IN GRAPHS [J].
Cyman, Joanna ;
Henning, Michael A. ;
Topp, Jerzy .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (03) :615-627
[39]   Improved upper bound on the double Roman domination number of graphs [J].
Chen, Xue-gang ;
Wu, Xiao-fei .
ARS COMBINATORIA, 2020, 153 :245-259
[40]   An upper bound for domination number of 5-regular graphs [J].
Hua-Ming Xing ;
Liang Sun ;
Xue-Gang Chen .
Czechoslovak Mathematical Journal, 2006, 56 :1049-1061