Domination and upper domination of direct product graphs

被引:10
作者
Defant, Colin [1 ]
Iyer, Sumun [2 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Cornell Univ, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Domination number; Upper domination number; Direct product graph; Unitary Cayley graph; Jacobsthal's function; Balanced; Complete multipartite graph; UNITARY CAYLEY-GRAPHS; CONSECUTIVE PRIMES; LARGE GAPS;
D O I
10.1016/j.disc.2018.06.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X-z/nz denote the unitary Cayley graph of Z/nZ. We present results on the tightness of the known inequality gamma (X-z/nz) <= gamma(t)(X-z/nz) <= g(n), where gamma and gamma(t) denote the domination number and total domination number, respectively, and g is the arithmetic function known as Jacobsthal's function. In particular, we construct integers n with arbitrarily many distinct prime factors such that gamma(X-z/nz) <= gamma(t) (X-z/nz) <= g(n) - 1. We give lower bounds for the domination numbers of direct products of complete graphs and present a conjecture for the exact values of the upper domination numbers of direct products of balanced, complete multipartite graphs. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2742 / 2752
页数:11
相关论文
共 50 条
[21]   Upper bounds for the domination number in graphs of diameter two [J].
Meierling, Dirk ;
Volkmann, Lutz .
UTILITAS MATHEMATICA, 2014, 93 :267-277
[22]   ANNIHILATOR DOMINATION NUMBER OF TENSOR PRODUCT OF PATH GRAPHS [J].
Sharma, K. ;
Sharma, U. .
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (04) :800-809
[23]   On the upper total domination number of Cartesian products of graphs [J].
Dorbec, Paul ;
Henning, Michael A. ;
Rall, Douglas F. .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2008, 16 (01) :68-80
[24]   Characterization of graphs with equal domination and connected domination numbers [J].
Chen, XG ;
Sun, L ;
Xing, HM .
DISCRETE MATHEMATICS, 2004, 289 (1-3) :129-135
[25]   Remarks on restrained domination and total restrained domination in graphs [J].
Bohdan Zelinka .
Czechoslovak Mathematical Journal, 2005, 55 :393-396
[26]   Remarks on restrained domination and total restrained domination in graphs [J].
Zelinka, B .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2005, 55 (02) :393-396
[27]   On the ratio of the domination number and the independent domination number in graphs [J].
Furuya, Michitaka ;
Ozeki, Kenta ;
Sasaki, Akinari .
DISCRETE APPLIED MATHEMATICS, 2014, 178 :157-159
[28]   A note on domination and independence-domination numbers of graphs [J].
Milanic, Martin .
ARS MATHEMATICA CONTEMPORANEA, 2013, 6 (01) :89-97
[29]   Note on domination and minus domination numbers in cubic graphs [J].
Chen, YJ ;
Cheng, TCE ;
Ng, CT ;
Shan, EF .
APPLIED MATHEMATICS LETTERS, 2005, 18 (09) :1062-1067
[30]   Domination in signed graphs [J].
Jeyalakshmi, P. .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (01)