Domination and upper domination of direct product graphs

被引:10
|
作者
Defant, Colin [1 ]
Iyer, Sumun [2 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Cornell Univ, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Domination number; Upper domination number; Direct product graph; Unitary Cayley graph; Jacobsthal's function; Balanced; Complete multipartite graph; UNITARY CAYLEY-GRAPHS; CONSECUTIVE PRIMES; LARGE GAPS;
D O I
10.1016/j.disc.2018.06.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X-z/nz denote the unitary Cayley graph of Z/nZ. We present results on the tightness of the known inequality gamma (X-z/nz) <= gamma(t)(X-z/nz) <= g(n), where gamma and gamma(t) denote the domination number and total domination number, respectively, and g is the arithmetic function known as Jacobsthal's function. In particular, we construct integers n with arbitrarily many distinct prime factors such that gamma(X-z/nz) <= gamma(t) (X-z/nz) <= g(n) - 1. We give lower bounds for the domination numbers of direct products of complete graphs and present a conjecture for the exact values of the upper domination numbers of direct products of balanced, complete multipartite graphs. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2742 / 2752
页数:11
相关论文
共 50 条
  • [1] Domination in direct products of complete graphs
    Vemuri, Harish
    DISCRETE APPLIED MATHEMATICS, 2020, 285 : 473 - 482
  • [2] On Upper Total Domination Versus Upper Domination in Graphs
    Zhu, Enqiang
    Liu, Chanjuan
    Deng, Fei
    Rao, Yongsheng
    GRAPHS AND COMBINATORICS, 2019, 35 (03) : 767 - 778
  • [3] On Upper Total Domination Versus Upper Domination in Graphs
    Enqiang Zhu
    Chanjuan Liu
    Fei Deng
    Yongsheng Rao
    Graphs and Combinatorics, 2019, 35 : 767 - 778
  • [5] Lower bounds for the domination number and the total domination number of direct product graphs
    Mekis, Gasper
    DISCRETE MATHEMATICS, 2010, 310 (23) : 3310 - 3317
  • [6] Roman domination in direct product graphs and rooted product graphs1
    Martinez, Abel Cabrera
    Peterin, Iztok
    Yero, Ismael G.
    AIMS MATHEMATICS, 2021, 6 (10): : 11084 - 11096
  • [7] Upper domination and upper irredundance perfect graphs
    Gutin, G
    Zverovich, VE
    DISCRETE MATHEMATICS, 1998, 190 (1-3) : 95 - 105
  • [8] Domination number of modular product graphs
    Bermudo, Sergio
    Peterin, Iztok
    Sedlar, Jelena
    Skrekovski, Riste
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (01)
  • [9] THE GEODETIC DOMINATION NUMBER FOR THE PRODUCT OF GRAPHS
    Chellathurai, S. Robinson
    Vijaya, S. Padma
    TRANSACTIONS ON COMBINATORICS, 2014, 3 (04) : 19 - 30
  • [10] Dot product graphs and domination number
    Dina Saleh
    Nefertiti Megahed
    Journal of the Egyptian Mathematical Society, 28 (1)