Angular spectrum representation of the Bessel-Gauss beam and its approximation: A comparison with the localized approximation

被引:28
作者
Shen, Jianqi [1 ]
Wang, Ying [1 ]
Yu, Haitao [1 ]
Ambrosio, Leonardo Andre [2 ]
Gouesbet, Gerard [3 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, 516 Jungong Rd, Shanghai 200093, Peoples R China
[2] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, 400 Trabalhador Sao Carlense Ave, BR-13566590 Sao Carlos, SP, Brazil
[3] Univ & INSA Rouen, Normandie Univ, CORIA,CNRS, UMR 6614, Campus Univ Madrillet, F-76800 St Etienne Rouvray, France
关键词
Angular spectrum representation; Localized approximation; Beam shape coefficient; Bessel-Gauss beam; LORENZ-MIE THEORY; ARBITRARY SHAPED BEAMS; RIGOROUS JUSTIFICATION; LIGHT-SCATTERING; VALIDITY; COEFFICIENTS; ORDER; DIFFRACTION; GENERATION; PROPAGATION;
D O I
10.1016/j.jqsrt.2022.108167
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The angular spectrum representation of the vector Bessel-Gauss beam is used for discussing the connection between the angular spectrum decomposition (ASD) method and the quadrature method of the generalized Lorenz-Mie theory (GLMT). Under the paraxial condition, the beam shape coefficients (BSCs) obtained in the ASD method can be approximated to the same expressions as those obtained in the localized approximation method. The validity of the approximate method for evaluating the BSCs is numerically studied, based on both the beam's angular spectrum and the off-axis distance. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 85 条
[1]   Generation of high quality tunable Bessel beams using a liquid-immersion axicon [J].
Akturk, Selcuk ;
Arnold, Cord L. ;
Prade, Bernard ;
Mysyrowicz, Andre .
OPTICS COMMUNICATIONS, 2009, 282 (16) :3206-3209
[2]   On the validity of the integral localized approximation for Bessel beams and associated radiation pressure forces [J].
Ambrosio, Leonardo A. ;
Wang, Jiajie ;
Gouesbet, Gerard .
APPLIED OPTICS, 2017, 56 (19) :5377-5387
[3]   Modified finite series technique for the evaluation of beam shape coefficients in the T-matrix methods for structured beams with application to Bessel beams [J].
Ambrosio, Leonardo Andre ;
Gouesbet, Gerard .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2020, 248
[4]   Assessing the validity of the localized approximation for discrete superpositions of Bessel beams [J].
Ambrosio, Leonardo Andre ;
Machado Vott, Lutz Felipe ;
Gouesbet, Gerard ;
Wang, Jiajie .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (11) :2690-2698
[5]   On the validity of the use of a localized approximation for helical beams. II. Numerical aspects [J].
Ambrosio, Leonardo Andre ;
Gouesbet, Gerard .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2018, 215 :41-50
[7]   Generation of high conical angle Bessel-Gauss beams with reflective axicons [J].
Boucher, Pauline ;
Del Hoy, Jesus ;
Billet, Cyril ;
Pinel, Olivier ;
Labroille, Guillaume ;
Courvoisier, Francois .
APPLIED OPTICS, 2018, 57 (23) :6725-6728
[8]   High quality quasi-Bessel beam generated by round-tip axicon [J].
Brzobohaty, Oto ;
Cizmar, Tomas ;
Zemanek, Pavel .
OPTICS EXPRESS, 2008, 16 (17) :12688-12700
[9]   On the validity of integral localized approximation for on-axis zeroth-order Mathieu beams [J].
Chafiq, A. ;
Ambrosio, L. A. ;
Gouesbet, G. ;
Belafhal, A. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2018, 204 :27-34
[10]   Analytical partial wave expansion of vector Bessel beam and its application to optical binding [J].
Chen, Jun ;
Ng, Jack ;
Wang, Pei ;
Lin, Zhifang .
OPTICS LETTERS, 2010, 35 (10) :1674-1676