Singular value decomposition assisted multicarrier continuous-variable quantum key distribution

被引:9
|
作者
Gyongyosi, Laszlo [1 ,2 ,3 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
[2] Budapest Univ Technol & Econ, Dept Networked Syst & Serv, H-1117 Budapest, Hungary
[3] Hungarian Acad Sci, MTA BME Informat Syst Res Grp, H-1051 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
Quantum key distribution; Quantum cryptography; Quantum communications; Continuous-variables; Quantum Shannon theory; CRYPTOGRAPHY;
D O I
10.1016/j.tcs.2019.07.029
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We define the singular value decomposition (SVD) assisted multicarrier continuous-variable quantum key distribution (CVQKD) protocol. The proposed protocol uses the singular value decomposition of the Gaussian quantum channel, which yields an additional degree of freedom for the phase space transmission. This additional degree of freedom can further be exploited in a multiple-access scenario. The SVD-assistance defines the eigenchannels of the Gaussian physical link, which can be used for the simultaneous reliable transmission of multiple user data streams. Our transmission model also includes the singular interference avoider (SIA) precoding scheme. The proposed SIA precoding scheme prevents the eigenchannel interference to reach an optimal transmission over a Gaussian link. We demonstrate the results through the adaptive multicarrier quadrature division-multiuser quadrature allocation (AMQD-MQA) CVQKD multiple-access scheme. The singular value assisted transmission provides improved simultaneous transmission rates for the users, particularly in crucial low signal-to-noise ratio regimes. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 63
页数:29
相关论文
共 50 条
  • [21] A Survey of Machine Learning Assisted Continuous-Variable Quantum Key Distribution
    Long, Nathan K.
    Malaney, Robert
    Grant, Kenneth J.
    Yu, Wenbin
    Chen, Yadang
    Zhang, Chengjun
    INFORMATION, 2023, 14 (10)
  • [22] Overview of device-independent continuous-variable quantum key distribution
    Goncharov, Roman
    Bolychev, Egor
    Vorontsova, Irina
    Samsonov, Eduard
    Egorov, Vladimir
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2022, 13 (03): : 290 - 298
  • [23] Gaussian Quadrature Inference for Continuous-Variable Quantum Key Distribution
    Gyongyosi, L.
    Imre, S.
    QUANTUM INFORMATION AND COMPUTATION IX, 2016, 9873
  • [24] Secret key rates of free-space optical continuous-variable quantum key distribution
    Gyongyosi, Laszlo
    Imre, Sandor
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2019, 32 (18)
  • [25] Atmospheric effects on continuous-variable quantum key distribution
    Wang, Shiyu
    Huang, Peng
    Wang, Tao
    Zeng, Guihua
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [26] Digital synchronization for continuous-variable quantum key distribution
    Chin, Hou-Man
    Jain, Nitin
    Andersen, Ulrik L.
    Zibar, Darko
    Gehring, Tobias
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (04)
  • [27] Practical implementation,of continuous-variable quantum key distribution
    Hirano, Takuya
    Shimoguchi, Atsushi
    Shirasaki, Kazuya
    Tokunaga, Shingo
    Furuki, Atsushi
    Kawamoto, Yohei
    namiki, Ryo
    QUANTUM INFORMATION AND COMPUTATION IV, 2006, 6244
  • [29] Continuous-variable quantum key distribution with entanglement in the middle
    Weedbrook, Christian
    PHYSICAL REVIEW A, 2013, 87 (02):
  • [30] Long-Distance Continuous-Variable Quantum Key Distribution With Quantum Scissors
    Ghalaii, Masoud
    Ottaviani, Carlo
    Kumar, Rupesh
    Pirandola, Stefano
    Razavi, Mohsen
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (03)