Singular value decomposition assisted multicarrier continuous-variable quantum key distribution

被引:9
|
作者
Gyongyosi, Laszlo [1 ,2 ,3 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
[2] Budapest Univ Technol & Econ, Dept Networked Syst & Serv, H-1117 Budapest, Hungary
[3] Hungarian Acad Sci, MTA BME Informat Syst Res Grp, H-1051 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
Quantum key distribution; Quantum cryptography; Quantum communications; Continuous-variables; Quantum Shannon theory; CRYPTOGRAPHY;
D O I
10.1016/j.tcs.2019.07.029
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We define the singular value decomposition (SVD) assisted multicarrier continuous-variable quantum key distribution (CVQKD) protocol. The proposed protocol uses the singular value decomposition of the Gaussian quantum channel, which yields an additional degree of freedom for the phase space transmission. This additional degree of freedom can further be exploited in a multiple-access scenario. The SVD-assistance defines the eigenchannels of the Gaussian physical link, which can be used for the simultaneous reliable transmission of multiple user data streams. Our transmission model also includes the singular interference avoider (SIA) precoding scheme. The proposed SIA precoding scheme prevents the eigenchannel interference to reach an optimal transmission over a Gaussian link. We demonstrate the results through the adaptive multicarrier quadrature division-multiuser quadrature allocation (AMQD-MQA) CVQKD multiple-access scheme. The singular value assisted transmission provides improved simultaneous transmission rates for the users, particularly in crucial low signal-to-noise ratio regimes. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 63
页数:29
相关论文
共 50 条
  • [1] Multicarrier continuous-variable quantum key distribution
    Gyongyosi, Laszlo
    THEORETICAL COMPUTER SCIENCE, 2020, 816 : 67 - 95
  • [2] Diversity Extraction for Multicarrier Continuous-Variable Quantum Key Distribution
    Gyongyosi, Laszlo
    2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 478 - 482
  • [3] Subcarrier Domain of Multicarrier Continuous-Variable Quantum Key Distribution
    Gyongyosi, Laszlo
    Imre, Sandor
    JOURNAL OF STATISTICAL PHYSICS, 2019, 177 (05) : 960 - 983
  • [4] Gaussian quadrature inference for multicarrier continuous-variable quantum key distribution
    Gyongyosi, Laszlo
    Imre, Sandor
    QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2019, 6 (04) : 397 - 430
  • [5] Diversity space of multicarrier continuous-variable quantum key distribution
    Gyongyosi, Laszlo
    Imre, Sandor
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2019, 32 (13)
  • [6] Subcarrier Domain of Multicarrier Continuous-Variable Quantum Key Distribution
    Laszlo Gyongyosi
    Sandor Imre
    Journal of Statistical Physics, 2019, 177 : 960 - 983
  • [7] Statistical quadrature evolution by inference for multicarrier continuous-variable quantum key distribution
    Gyongyosi, Laszlo
    Imre, Sandor
    QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2020, 7 (01) : 99 - 124
  • [8] Secret Key Rate Adaption for Multicarrier Continuous-Variable Quantum Key Distribution
    Gyongyosi L.
    Imre S.
    SN Computer Science, 2020, 1 (1)
  • [9] Eigenchannel Decomposition for Continuous-Variable Quantum Key Distribution
    Gyongyosi, L.
    Imre, S.
    ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION VIII, 2015, 9377
  • [10] Gaussian quadrature inference for multicarrier continuous-variable quantum key distribution
    Laszlo Gyongyosi
    Sandor Imre
    Quantum Studies: Mathematics and Foundations, 2019, 6 : 397 - 430