Weierstrass jump sequences and gonality

被引:1
|
作者
Beorchia, Valentina [1 ]
Sacchiero, Gianni [2 ]
机构
[1] Univ Trieste, Dipartimento Matemat & Geosci, Via Valerio 12-B, I-34127 Trieste, Italy
[2] Localita S Croce 159, I-34151 Trieste, Italy
关键词
Weierstrass gap sequences; Gonality; Gonal scroll; NUMERICAL SEMIGROUPS; TRIGONAL CURVES; LINEAR SERIES; POINTS; EXISTENCE; COVERINGS; RAMIFICATION; WEIGHT;
D O I
10.1007/s00233-015-9694-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove some structure results on Weierstrass points on a non-hyperelliptic curve, which are total or almost total ramification points for the gonal covering. It turns out that the corresponding Weierstrass semigroup is strictly related to the splitting type of the gonal scroll containing the canonical model of the curve. We also give a description of the Weierstrass gap sequence in the case of a non ramification point for the gonal cover.
引用
收藏
页码:598 / 632
页数:35
相关论文
共 50 条
  • [11] Stable gonality is computable
    Koerkamp, Ragnar Groot
    van der Wegen, Marieke
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (01)
  • [12] The extremal secant conjecture for curves of arbitrary gonality
    Kemeny, Michael
    COMPOSITIO MATHEMATICA, 2017, 153 (02) : 347 - 357
  • [13] Weierstrass semigroups and nodal curves of type p, q
    Knebl, H.
    Kunz, E.
    Waldi, R.
    JOURNAL OF ALGEBRA, 2011, 348 (01) : 315 - 335
  • [14] G. Martens' dimension theorem for curves of odd gonality
    Kato, T
    Keem, C
    GEOMETRIAE DEDICATA, 1999, 78 (03) : 301 - 313
  • [15] GONALITY OF THE MODULAR CURVE X0(N)
    Najman, Filip
    Orlic, Petar
    MATHEMATICS OF COMPUTATION, 2023, : 863 - 886
  • [16] Computing graph gonality is hard
    Gijswijt, Dion
    Smit, Harry
    van der Wegen, Marieke
    DISCRETE APPLIED MATHEMATICS, 2020, 287 : 134 - 149
  • [17] Gonality of curves on general hypersurfaces
    Bastianelli, Francesco
    Ciliberto, Ciro
    Flamini, Flaminio
    Supino, Paola
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 125 : 94 - 118
  • [18] Gonality of the modular curve X1 (N)
    Derickx, Maarten
    van Hoeij, Mark
    JOURNAL OF ALGEBRA, 2014, 417 : 52 - 71
  • [19] G. Martens′ Dimension Theorem for Curves of Odd Gonality
    Takao Kato
    Changho Keem
    Geometriae Dedicata, 1999, 78 : 301 - 313
  • [20] Stable Divisorial Gonality is in NP
    Hans L. Bodlaender
    Marieke van der Wegen
    Tom C. van der Zanden
    Theory of Computing Systems, 2021, 65 : 428 - 440