Conformable differential operator generalizes the Briot-Bouquet differential equation in a complex domain

被引:22
作者
Ibrahim, Rabha W. [1 ]
Jahangiri, Jay M. [2 ]
机构
[1] Univ Malaya, Cloud Comp Ctr, Kuala Lumpur 50603, Malaysia
[2] Kent State Univ, Math Sci, Burton, OH 44021 USA
来源
AIMS MATHEMATICS | 2019年 / 4卷 / 06期
关键词
conformable derivative; subordination and superordination; univalent function; analytic function; Briot-Bouquet differential equation;
D O I
10.3934/math.2019.6.1582
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Very recently, a new local and limit-based extension of derivatives, called conformable derivative, has been formulated. We define a new conformable derivative in the complex domain, derive its differential calculus properties as well as its geometric properties in the field of geometric function theory. In addition, we employ the new conformable operator to generalize the Briot-Bouquet differential equation. We establish analytic solutions for the generalized Briot-Bouquet differential equation by using the concept of subordination and superordination. Examples of special normalized functions are illustrated in the sequel.
引用
收藏
页码:1582 / 1595
页数:14
相关论文
共 8 条
[1]  
Anderson DR., 2015, Adv Dyn Sys Appl, V10, P109, DOI DOI 10.13140/RG.2.1.1744.9444
[2]  
Anderson DR., 2019, J FRACTIONAL CALCULU, V10, P92
[3]  
Duren PL., 2001, Univalent functions
[4]  
Goodman A. W., 1983, UNIVALENT FUNCTIONS
[5]  
Janowski W., 1973, Ann. Pol. Math, V3, P297, DOI [10.4064/ap-28-3-297-326, DOI 10.4064/AP-28-3-297-326]
[6]  
Li Y, 2006, IEEE CONTR SYST MAG, V26, P32
[7]  
Miller S. S., 2000, Monographs and Textbooks in Pure and Applied Mathematics, V225
[8]  
SALAGEAN GS, 1983, LECT NOTES MATH, V1013, P362