Diverse responses of vegetation growth to meteorological drought across climate zones and land biomes in northern China from 1981 to 2014

被引:240
作者
Xu, Hao-jie [1 ]
Wang, Xin-ping [2 ]
Zhao, Chuan-yan [1 ]
Yang, Xue-mei [3 ]
机构
[1] Lanzhou Univ, Coll Pastoral Agr Sci & Technol, Minist Agr & Rural Affairs, State Key Lab Grassland Agroecosyst,Key Lab Grass, Lanzhou 730020, Gansu, Peoples R China
[2] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Shapotou Desert Res & Expt Stn, Lanzhou 730000, Gansu, Peoples R China
[3] Gansu Desert Control Res Inst, State Key Lab Breeding Base Desertificat & Aeolia, Lanzhou 730070, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Climatic extremes; Dryland ecosystems; Landscape vulnerability; Functional diversity; Water balance; NET PRIMARY PRODUCTION; INTERANNUAL VARIABILITY; PRIMARY PRODUCTIVITY; EXTREME DROUGHT; CENTRAL-ASIA; TIME-SCALES; PRECIPITATION; IMPACTS; NDVI; TREND;
D O I
10.1016/j.agrformet.2018.06.027
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Improving our understanding of present and future impacts of drought on the vegetation in northern China is heightened by expectations that drought would increase its vulnerability and subsequently accelerate land degradation. The response of vegetation activity to drought and the underlying mechanisms are not well known. By using the third-generation Normalized Difference Vegetation Index (NDVI) and the Standardized Precipitation Evapotranspiration Index (SPEI), we investigated the relationship between NDVI and SPEI, across different climate regimes and land cover types, and determined the dominant time-scales at which different biome types respond to drought during the period of 1981-2014. Our results showed that biome response is coupled with drought trends in most regions of northern China. The highest correlation between monthly NDVI and SPEI at different time scales (1-48 months) assessed the impact of drought on vegetation, and the time scales resulting in the highest correlation were an effective indicator of drought resistance, which was related to the interactive roles of mean water balance and divergent drought survival traits and strategies. Diverse responses of vegetation to drought were critically dependent on characteristic drought time-scales and different growing environments. This study highlighted the most susceptible ecosystem types to drought occurrence under current climate, including temperate steppes, temperate desert steppes, warm shrubs and dry forests. Given that drought will be more frequent and severe under future climate scenarios, it may threaten the survival of mesic ecosystems, such as temperate meadows, alpine grasslands, dwarf shrubs, and moist forests not normally considered at drought risk. We propose that future research should be focused on arid and semi-arid ecosystems, where the strongest impact of drought on vegetation is occurring and the need for an early warning drought system is increasingly urgent.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 82 条
[1]   The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink [J].
Ahlstrom, Anders ;
Raupach, Michael R. ;
Schurgers, Guy ;
Smith, Benjamin ;
Arneth, Almut ;
Jung, Martin ;
Reichstein, Markus ;
Canadell, Josep G. ;
Friedlingstein, Pierre ;
Jain, Atul K. ;
Kato, Etsushi ;
Poulter, Benjamin ;
Sitch, Stephen ;
Stocker, Benjamin D. ;
Viovy, Nicolas ;
Wang, Ying Ping ;
Wiltshire, Andy ;
Zaehle, Soenke ;
Zeng, Ning .
SCIENCE, 2015, 348 (6237) :895-899
[2]   Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models [J].
Anderegg, W. R. L. ;
Schwalm, C. ;
Biondi, F. ;
Camarero, J. J. ;
Koch, G. ;
Litvak, M. ;
Ogle, K. ;
Shaw, J. D. ;
Shevliakova, E. ;
Williams, A. P. ;
Wolf, A. ;
Ziaco, E. ;
Pacala, S. .
SCIENCE, 2015, 349 (6247) :528-532
[3]   The 2009/10 Drought in China: Possible Causes and Impacts on Vegetation [J].
Barriopedro, David ;
Gouveia, Celia M. ;
Trigo, Ricardo M. ;
Wang, Lin .
JOURNAL OF HYDROMETEOROLOGY, 2012, 13 (04) :1251-1267
[4]   Global evaluation of four AVHRR-NDVI data sets: Intercomparison and assessment against Landsat imagery [J].
Beck, Hylke E. ;
McVicar, Tim R. ;
van Dijk, Albert I. J. M. ;
Schellekens, Jaap ;
de Jeu, Richard A. M. ;
Bruijnzeel, L. Adrian .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (10) :2547-2563
[5]   A MULTISCALAR GLOBAL DROUGHT DATASET: THE SPEIBASE A New Gridded Product for the Analysis of Drought Variability and Impacts [J].
Begueria, Santiago ;
Vicente-Serrano, Sergio M. ;
Angulo-Martinez, Marta .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2010, 91 (10) :1351-1354
[6]   On the relation between NDVI, fractional vegetation cover, and leaf area index [J].
Carlson, TN ;
Ripley, DA .
REMOTE SENSING OF ENVIRONMENT, 1997, 62 (03) :241-252
[7]   Global convergence in the vulnerability of forests to drought [J].
Choat, Brendan ;
Jansen, Steven ;
Brodribb, Tim J. ;
Cochard, Herve ;
Delzon, Sylvain ;
Bhaskar, Radika ;
Bucci, Sandra J. ;
Feild, Taylor S. ;
Gleason, Sean M. ;
Hacke, Uwe G. ;
Jacobsen, Anna L. ;
Lens, Frederic ;
Maherali, Hafiz ;
Martinez-Vilalta, Jordi ;
Mayr, Stefan ;
Mencuccini, Maurizio ;
Mitchell, Patrick J. ;
Nardini, Andrea ;
Pittermann, Jarmila ;
Pratt, R. Brandon ;
Sperry, John S. ;
Westoby, Mark ;
Wright, Ian J. ;
Zanne, Amy E. .
NATURE, 2012, 491 (7426) :752-+
[8]   Contrasting climatic controls on the estimated productivity of global terrestrial biomes [J].
Churkina, G ;
Running, SW .
ECOSYSTEMS, 1998, 1 (02) :206-215
[9]   Ecological effects of extreme drought on Californian herbaceous plant communities [J].
Copeland, Stella M. ;
On, Susan P. Harris ;
Latimer, Andrew M. ;
Damschen, Ellen I. ;
Eskelinen, Anu M. ;
Fernandez-Going, Barbara ;
Spasojevic, Marko J. ;
Anacker, Brian L. ;
Thorne, James H. .
ECOLOGICAL MONOGRAPHS, 2016, 86 (03) :295-311
[10]  
Craine JM, 2013, NAT CLIM CHANGE, V3, P63, DOI [10.1038/nclimate1634, 10.1038/NCLIMATE1634]