Real zeros of Eisenstein series and Rankin-Selberg L-functions

被引:0
作者
Bauer, C. [1 ]
Wang, Y.
机构
[1] Dolby Labs, San Francisco, CA USA
[2] Capital Normal Univ, Dept Math, Beijing 100037, Peoples R China
基金
美国国家科学基金会;
关键词
Eisenstein series; Rankin-Selberg; L-function;
D O I
10.1007/s10474-007-5102-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the Eisenstein series E(z, s) have no real zeroes for s is an element of (0,1) when the value of the imaginary part of z is in the range 1/5 < Im z < 4.94. For very large and very small values of the imaginary part of z, E(z, s) have real zeros in (1/2,), i.e. GRH does not hold for the Eisenstein series. Using these properties, we prove that the Rankin-Selberg L-function attached with the Ramanujan tau-function has no real zeros in the critical strip, except at the central point s = 1/2.
引用
收藏
页码:13 / 27
页数:15
相关论文
共 10 条
[1]  
Bateman P. T., 1964, ACTA ARITH, V9, P365
[2]  
BUMP D, 1997, AUTOMORPHIC FORMS RE
[3]  
Davenport H., 1980, MULTIPLICATIVE NUMBE
[4]   Computing special values of motivic L-functions [J].
Dokchitser, T .
EXPERIMENTAL MATHEMATICS, 2004, 13 (02) :137-149
[5]   APPENDIX - AN EFFECTIVE ZERO-FREE REGION [J].
GOLDFELD, D ;
HOFFSTEIN, J ;
LIEMAN, D .
ANNALS OF MATHEMATICS, 1994, 140 (01) :177-181
[6]   COEFFICIENTS OF MAASS FORMS AND THE SIEGEL ZERO [J].
HOFFSTEIN, J ;
LOCKHART, P .
ANNALS OF MATHEMATICS, 1994, 140 (01) :161-176
[7]  
HOFFSTEIN J, 1995, INT MATH RES NOTICES, V6, P279
[8]   VALUES OF L-SERIES OF MODULAR-FORMS AT THE CENTER OF THE CRITICAL STRIP [J].
KOHNEN, W ;
ZAGIER, D .
INVENTIONES MATHEMATICAE, 1981, 64 (02) :175-198
[9]  
Lapid E, 2003, ANN MATH, V157, P891
[10]  
Rankin RA, 1939, P CAMB PHILOS SOC, V35, P351