Protein structure prediction in the deep learning era

被引:17
作者
Peng, Zhenling [1 ]
Wang, Wenkai [2 ]
Han, Renmin [1 ]
Zhang, Fa [3 ]
Yang, Jianyi [1 ]
机构
[1] Shandong Univ, Frontiers Sci Ctr Nonlinear Expectat, Res Ctr Math & Interdisciplinary Sci, Minist Educ, Qingdao 266237, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Beijing Inst Technol, Sch Med Technol, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
FOLDING PROBLEM; SERVER; IMPACT;
D O I
10.1016/j.sbi.2022.102495
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Significant advances have been achieved in protein structure prediction, especially with the recent development of the AlphaFold2 and the RoseTTAFold systems. This article reviews the progress in deep learning-based protein structure prediction methods in the past two years. First, we divide the representative methods into two categories: the two-step approach and the end-to-end approach. Then, we show that the two-step approach is possible to achieve similar accuracy to the state-of-the-art end-to-end approach AlphaFold2. Compared to the end-to-end approach, the two-step approach requires fewer computing resources. We conclude that it is valuable to keep developing both approaches. Finally, a few outstanding challenges in function-orientated protein structure prediction are pointed out for future development.
引用
收藏
页数:7
相关论文
共 53 条
  • [1] End-to-End Differentiable Learning of Protein Structure
    AlQuraishi, Mohammed
    [J]. CELL SYSTEMS, 2019, 8 (04) : 292 - +
  • [2] De novo protein design by deep network hallucination
    Anishchenko, Ivan
    Pellock, Samuel J.
    Chidyausiku, Tamuka M.
    Ramelot, Theresa A.
    Ovchinnikov, Sergey
    Hao, Jingzhou
    Bafna, Khushboo
    Norn, Christoffer
    Kang, Alex
    Bera, Asim K.
    DiMaio, Frank
    Carter, Lauren
    Chow, Cameron M.
    Montelione, Gaetano T.
    Baker, David
    [J]. NATURE, 2021, 600 (7889) : 547 - +
  • [3] Accurate prediction of protein structures and interactions using a three-track neural network
    Baek, Minkyung
    DiMaio, Frank
    Anishchenko, Ivan
    Dauparas, Justas
    Ovchinnikov, Sergey
    Lee, Gyu Rie
    Wang, Jue
    Cong, Qian
    Kinch, Lisa N.
    Schaeffer, R. Dustin
    Millan, Claudia
    Park, Hahnbeom
    Adams, Carson
    Glassman, Caleb R.
    DeGiovanni, Andy
    Pereira, Jose H.
    Rodrigues, Andria V.
    van Dijk, Alberdina A.
    Ebrecht, Ana C.
    Opperman, Diederik J.
    Sagmeister, Theo
    Buhlheller, Christoph
    Pavkov-Keller, Tea
    Rathinaswamy, Manoj K.
    Dalwadi, Udit
    Yip, Calvin K.
    Burke, John E.
    Garcia, K. Christopher
    Grishin, Nick V.
    Adams, Paul D.
    Read, Randy J.
    Baker, David
    [J]. SCIENCE, 2021, 373 (6557) : 871 - +
  • [4] Protein oligomer modeling guided by predicted interchain contacts in CASP14
    Baek, Minkyung
    Anishchenko, Ivan
    Park, Hahnbeom
    Humphreys, Ian R.
    Baker, David
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2021, 89 (12) : 1824 - 1833
  • [5] Version 1.2 of the Crystallography and NMR system
    Brunger, Axel T.
    [J]. NATURE PROTOCOLS, 2007, 2 (11) : 2728 - 2733
  • [6] Improved prediction of protein-protein interactions using AlphaFold2
    Bryant, P.
    Pozzati, G.
    Elofsson, A.
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [7] Bryant P, 2022, bioRxiv
  • [8] Can AlphaFold2 predict the impact of missense mutations on structure?
    Buel, Gwen R.
    Walters, Kylie J.
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2022, 29 (01) : 1 - 2
  • [9] 'IT WILL CHANGE EVERYTHING': DEEPMIND'S AI MAKES GIGANTIC LEAP IN SOLVING PROTEIN STRUCTURES
    Callaway, Ewen
    [J]. NATURE, 2020, 588 (7837) : 203 - 204
  • [10] Chowdhury R, 2021, BIORXIV, DOI [10.1101/2021.08.02.454840:2021.2008.2002.454840, DOI 10.1101/2021.08.02.454840:2021.2008.2002.454840]