Parameter estimation of delay dynamical system from a scalar time series under external noise

被引:7
作者
Ghosh, Dibakar [1 ]
Chowdhury, A. Roy [2 ]
机构
[1] Dinabandhu Andrews Coll, Dept Math, Kolkata 84, W Bengal, India
[2] Jadavpur Univ, Div High Energy Phys, Dept Phys, Kolkata 32, W Bengal, India
关键词
Adaptive learning rule; Synchronization; Parameter estimation; Noise; Modulated delay time; SYNCHRONIZATION; CHAOS;
D O I
10.1016/j.amc.2010.03.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce an adaptive learning rules for estimating all unknown parameters of delay dynamical system using a scalar time series. Sufficient condition for synchronization is derived using Krasovskii-Lyapunov theory. This scheme is highly applicable in secure communication since multiple messages can be transmitted through multiple parameter modulations. One of the advantage of this method is that parameter estimation is also possible even when only one time series of the transmitter is available. We present numerical examples for Mackey-Glass system with periodic delay time which are used to illustrate the validity of this scheme. The corresponding numerical results and the effect of external noise are also studied. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2069 / 2076
页数:8
相关论文
共 20 条
[1]   Synchronization between two different time-delayed systems and image encryption [J].
Banerjee, S. ;
Ghosh, D. ;
Ray, A. ;
Chowdhury, A. Roy .
EPL, 2008, 81 (02)
[2]   Chaos synchronization and parameter estimation from a scalar output signal [J].
Chen, Maoyin ;
Kurths, Juergen .
PHYSICAL REVIEW E, 2007, 76 (02)
[3]  
DITTO WL, 1997, SPECIAL ISSUE CHAOS, V7, pN4
[4]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[5]   Synchronization between variable time-delayed systems and cryptography [J].
Ghosh, D. ;
Banerjee, S. ;
Chowdhury, A. R. .
EPL, 2007, 80 (03)
[6]   Nonlinear-observer-based synchronization scheme for multiparameter estimation [J].
Ghosh, Dibakar .
EPL, 2008, 84 (04)
[7]   CHAOS, NOISE, AND SYNCHRONIZATION RECONSIDERED [J].
HERZEL, H ;
FREUND, J .
PHYSICAL REVIEW E, 1995, 52 (03) :3238-3241
[8]   Identifying parameter by identical synchronization between different systems [J].
Huang, DB ;
Guo, RW .
CHAOS, 2004, 14 (01) :152-159
[9]   Multiparameter estimation using only a chaotic time series and its applications [J].
Huang, Debin ;
Xing, Guojing ;
Wheeler, Diek W. .
CHAOS, 2007, 17 (02)
[10]  
Kloeden P. E., 1992, NUMERICAL SOLUTION S