Hourly PM2.5 Estimates from a Geostationary Satellite Based on an Ensemble Learning Algorithm and Their Spatiotemporal Patterns over Central East China

被引:22
作者
Liu, Jianjun [1 ]
Weng, Fuzhong [2 ]
Li, Zhanqing [3 ,4 ]
Cribb, Maureen C. [3 ]
机构
[1] Lab Environm Model & Data Optima EMDO, Laurel, MD 20707 USA
[2] State Key Lab Severe Weather, Beijing 100081, Peoples R China
[3] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA
[4] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA
关键词
hourly PM2.5 concentrations; ensemble machine learning; spatiotemporal patterns; central East China; GROUND-LEVEL PM2.5; FINE PARTICULATE MATTER; AEROSOL OPTICAL DEPTH; BEIJING-TIANJIN-HEBEI; BOUNDARY-LAYER HEIGHT; UNITED-STATES; KM RESOLUTION; MODIS AOD; POLLUTION; REGRESSION;
D O I
10.3390/rs11182120
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Satellite-derived aerosol optical depths (AODs) have been widely used to estimate surface fine particulate matter (PM2.5) concentrations over areas that do not have PM2.5 monitoring sites. To date, most studies have focused on estimating daily PM2.5 concentrations using polar-orbiting satellite data (e.g., from the Moderate Resolution Imaging Spectroradiometer), which are inadequate for understanding the evolution of PM2.5 distributions. This study estimates hourly PM2.5 concentrations from Himawari AOD and meteorological parameters using an ensemble learning model. We analyzed the spatial agglomeration patterns of the estimated PM2.5 concentrations over central East China. The estimated PM2.5 concentrations agree well with ground-based data with an overall cross-validated coefficient of determination of 0.86 and a root-mean-square error of 17.3 mu g m(-3). Satellite-estimated PM2.5 concentrations over central East China display a north-to-south decreasing gradient with the highest concentration in winter and the lowest concentration in summer. Diurnally, concentrations are higher in the morning and lower in the afternoon. PM2.5 concentrations exhibit a significant spatial agglomeration effect in central East China. The errors in AOD do not necessarily affect the retrieval accuracy of PM2.5 proportionally, especially if the error is systematic. High-frequency spatiotemporal PM2.5 variations can improve our understanding of the formation and transportation processes of regional pollution episodes.
引用
收藏
页数:20
相关论文
共 59 条
[1]   LOCAL INDICATORS OF SPATIAL ASSOCIATION - LISA [J].
ANSELIN, L .
GEOGRAPHICAL ANALYSIS, 1995, 27 (02) :93-115
[2]   Addressing Global Mortality from Ambient PM2.5 [J].
Apte, Joshua S. ;
Marshall, Julian D. ;
Cohen, Aaron J. ;
Brauer, Michael .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (13) :8057-8066
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]   Statistical modeling: The two cultures [J].
Breiman, L .
STATISTICAL SCIENCE, 2001, 16 (03) :199-215
[5]   An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure [J].
Burnett, Richard T. ;
Pope, C. Arden, III ;
Ezzati, Majid ;
Olives, Casey ;
Lim, Stephen S. ;
Mehta, Sumi ;
Shin, Hwashin H. ;
Singh, Gitanjali ;
Hubbell, Bryan ;
Brauer, Michael ;
Anderson, H. Ross ;
Smith, Kirk R. ;
Balmes, John R. ;
Bruce, Nigel G. ;
Kan, Haidong ;
Laden, Francine ;
Pruess-Ustuen, Annette ;
Turner, Michelle C. ;
Gapstur, Susan M. ;
Diver, W. Ryan ;
Cohen, Aaron .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2014, 122 (04) :397-403
[6]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[7]   Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation [J].
Diego Rodriguez, Juan ;
Perez, Aritz ;
Antonio Lozano, Jose .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (03) :569-575
[8]   Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality [J].
Engel-Cox, JA ;
Holloman, CH ;
Coutant, BW ;
Hoff, RM .
ATMOSPHERIC ENVIRONMENT, 2004, 38 (16) :2495-2509
[9]   Satellite-based ground PM2.5 estimation using timely structure adaptive modeling [J].
Fang, Xin ;
Zou, Bin ;
Liu, Xiaoping ;
Sternberg, Troy ;
Zhai, Liang .
REMOTE SENSING OF ENVIRONMENT, 2016, 186 :152-163
[10]   Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model [J].
Geng, Guannan ;
Zhang, Qiang ;
Martin, Randall V. ;
van Donkelaar, Aaron ;
Huo, Hong ;
Che, Huizheng ;
Lin, Jintai ;
He, Kebin .
REMOTE SENSING OF ENVIRONMENT, 2015, 166 :262-270