Generalized Smoothness and Approximation of Periodic Functions in the Spaces Lp, 1 < p < plus ∞

被引:3
作者
Runovskii, K. V. [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow 119991, Russia
关键词
best approximation; modulus of smoothness; generalized derivative; MODULI;
D O I
10.1134/S0001434619090104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Norms of images of operators of multiplier type with an arbitrary generator are estimated by using best approximations of periodic functions of one variable by trigonometric polynomials in the scale of the spaces L-p, 1 < p < +infinity. A Bernstein-type inequality for the generalized derivative of the trigonometric polynomial generated by an arbitrary generator psi, sufficient constructive psi-smoothness conditions, estimates of best approximations of psi-derivatives, estimates of best approximations of psi-smooth functions, and an inverse theorem of approximation theory for the generalized modulus of smoothness generated by an arbitrary periodic generator are obtained as corollaries.
引用
收藏
页码:412 / 422
页数:11
相关论文
共 22 条
  • [1] [Anonymous], 1992, HIGHER ANAL
  • [2] Arestov V.V., 1981, IZV AKAD NAUK SSSR M, V45, P3
  • [3] Belinskii Edward, 1994, FUNCT APPROX COMMENT, V22, P189
  • [4] Butzer P.L., 1971, Reviews in Group Representation Theory, Part A (Pure and Applied Mathematics Series, V1
  • [5] BEST TRIGONOMETRIC APPROXIMATION, FRACTIONAL ORDER DERIVATIVES AND LIPSCHITZ CLASSES
    BUTZER, PL
    DYCKHOFF, H
    GORLICH, E
    STENS, RL
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1977, 29 (04): : 781 - 793
  • [6] Ivanov V. I., 1975, Mat. zametki, V18, P641
  • [7] Potapov M. K., 2011, T MEKH MAT FAKULTETA, P100
  • [8] Runovski K., 2001, FUNCT APPROX COMMENT, V29, P125, DOI DOI 10.7169/FACM/1538186723
  • [9] Runovski K., 2014, NEW PERSPECTIVES APP, P269
  • [10] Trigonometric polynomial approximation, K-functionals and generalized moduli of smoothness
    Runovski, K. V.
    [J]. SBORNIK MATHEMATICS, 2017, 208 (02) : 237 - 254