Sculpted grain boundaries in soft crystals

被引:33
作者
Li, Xiao [1 ,2 ]
Martinez-Gonzalez, Jose A. [3 ]
Guzman, Orlando [4 ]
Ma, Xuedan [5 ]
Park, Kangho [1 ]
Zhou, Chun [1 ]
Kambe, Yu [1 ]
Jin, Hyeong Min [1 ]
Dolan, James A. [1 ,6 ]
Nealey, Paul F. [1 ,6 ]
de Pablo, Juan J. [1 ,6 ]
机构
[1] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[2] Univ North Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA
[3] Univ Autonoma San Luis Potosi, Fac Ciencias, Ave Parque Chapultepec 1570, San Luis Potosi 78295, San Luis Potosi, Mexico
[4] Univ Autonoma Metropolitana, Dept Fis, Ave San Rafael Atlixco 186, Mexico City 09340, DF, Mexico
[5] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[6] Argonne Natl Lab, Ctr Mol Engn, Lemont, IL 60439 USA
关键词
PHASE LIQUID-CRYSTAL; BLUE-PHASE; ENERGY;
D O I
10.1126/sciadv.aax9112
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Engineering the grain boundaries of crystalline materials represents an enduring challenge, particularly in the case of soft materials. Grain boundaries, however, can provide preferential sites for chemical reactions, adsorption processes, nucleation of phase transitions, and mechanical transformations. In this work, "soft heteroepitaxy" is used to exert precise control over the lattice orientation of three-dimensional liquid crystalline soft crystals, thereby granting the ability to sculpt the grain boundaries between them. Since these soft crystals are liquid-like in nature, the heteroepitaxy approach introduced here provides a clear strategy to accurately mold liquid-liquid interfaces in structured liquids with a hitherto unavailable level of precision.
引用
收藏
页数:8
相关论文
共 33 条
[1]   Numerical results for the blue phases [J].
Alexander, G. P. ;
Yeomans, J. M. .
LIQUID CRYSTALS, 2009, 36 (10-11) :1215-1227
[2]   Anisotropic Self-Assembly of Supramolecular Polymers and Plasmonic Nanoparticles at the Liquid Liquid Interface [J].
Armao, Joseph J. ;
Nyrkova, Irina ;
Fuks, Gad ;
Osypenko, Artem ;
Maaloum, Mounir ;
Moulin, Emilie ;
Arenal, Raul ;
Gavat, Odile ;
Semenov, Alexander ;
Giuseppone, Nicolas .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (06) :2345-2350
[3]   Supramolecular assembly of nauoparticles at liquid-liquid interfaces [J].
Binder, WH .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (33) :5172-5175
[4]  
Castles F, 2012, NAT MATER, V11, P599, DOI [10.1038/NMAT3330, 10.1038/nmat3330]
[5]   Inducing monodomain blue phase liquid crystals by long-lasting voltage application during temperature variation [J].
Claus, H. ;
Willekens, O. ;
Chojnowska, O. ;
Dabrowski, R. ;
Beeckman, J. ;
Neyts, K. .
LIQUID CRYSTALS, 2016, 43 (05) :688-693
[6]   THE CHOLESTERIC BLUE PHASE - A PROGRESS REPORT [J].
CROOKER, PP .
MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1983, 98 (1-4) :31-45
[7]   Modeling planar degenerate wetting and anchoring in nematic liquid crystals [J].
Fournier, JB ;
Galatola, P .
EUROPHYSICS LETTERS, 2005, 72 (03) :403-409
[8]   Electro-optical Memory of a Nanoengineered Amorphous Blue-Phase-III Polymer Scaffold [J].
Gandhi, Sahil Sandesh ;
Kim, Min Su ;
Hwang, Jeoung-Yeon ;
Chien, Liang-Chy .
ADVANCED MATERIALS, 2016, 28 (40) :8998-9005
[9]   Self-organized multigrain patterning with special grain boundaries produced by phase transformation cycling [J].
Gao, Yipeng ;
Zhang, Yongfeng ;
Beeler, Benjamin W. ;
Wang, Yunzhi .
PHYSICAL REVIEW MATERIALS, 2018, 2 (07)
[10]   Optimized blue-phase liquid crystal for fieldsequential-color displays [J].
Huang, Yuge ;
Chen, Haiwei ;
Tan, Guanjun ;
Tobata, Hitoshi ;
Yamamoto, Shin-ichi ;
Okabe, Eiji ;
Lan, Yi-Fen ;
Tsai, Cheng-Yeh ;
Wu, Shin-Tson .
OPTICAL MATERIALS EXPRESS, 2017, 7 (02) :641-650