Scalar quantum field theory with a complex cubic interaction

被引:119
作者
Bender, CM
Brody, DC
Jones, HF
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England
[2] Washington Univ, Dept Phys, St Louis, MO 63130 USA
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevLett.93.251601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter it is shown that an iphi(3) quantum field theory is a physically acceptable model because the spectrum is positive and the theory is unitary. The demonstration rests on the perturbative construction of a linear operator C, which is needed to define the Hilbert space inner product. The C operator is a new, time-independent observable in PT-symmetric quantum field theory.
引用
收藏
页码:251601 / 1
页数:4
相关论文
共 19 条
  • [1] Abarbanel HDI., 1975, Phys. Rep, V21, P119, DOI [10.1016/0370-1573(75)90034-4, DOI 10.1016/0370-1573(75)90034-4]
  • [2] INTEGRATION OF OPERATOR DIFFERENTIAL-EQUATIONS
    BENDER, CM
    DUNNE, GV
    [J]. PHYSICAL REVIEW D, 1989, 40 (10): : 3504 - 3511
  • [3] EXACT-SOLUTIONS TO OPERATOR DIFFERENTIAL-EQUATIONS
    BENDER, CM
    DUNNE, GV
    [J]. PHYSICAL REVIEW D, 1989, 40 (08): : 2739 - 2742
  • [4] The C operator in PT-symmetric quantum theories
    Bender, CM
    Brod, J
    Refig, A
    Reuter, ME
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (43): : 10139 - 10165
  • [5] Complex extension of quantum mechanics
    Bender, CM
    Brody, DC
    Jones, HF
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (27)
  • [6] Must a Hamiltonian be Hermitian?
    Bender, CM
    Brody, DC
    Jones, HF
    [J]. AMERICAN JOURNAL OF PHYSICS, 2003, 71 (11) : 1095 - 1102
  • [7] Calculation of the hidden symmetry operator in PT-symmetric quantum mechanics
    Bender, CM
    Meisinger, PN
    Wang, QH
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07): : 1973 - 1983
  • [8] Real spectra in non-Hermitian Hamiltonians having PT symmetry
    Bender, CM
    Boettcher, S
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (24) : 5243 - 5246
  • [9] Bender CM, 2000, PHYS REV D, V62, DOI 10.1103/PhysRevD.62.085001
  • [10] BENDER CM, 1978, ADV MATH METHODS SCI, pCH10