The Proton Density of States in Confined Water (H2O)

被引:2
|
作者
Chen, Sow-Hsin [1 ]
Corsaro, Carmelo [2 ]
Mallamace, Francesco [1 ,3 ]
Fazio, Enza [2 ]
Mallamace, Domenico [2 ]
机构
[1] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Messina, Dipartimento Sci Matemat & Informat, Sci Fis & Sci Terra MIFT, I-98166 Messina, Italy
[3] CNR, ISC, I-00185 Rome, Italy
关键词
water; confined water; density of states; inelastic neutron scattering; STOKES-EINSTEIN RELATION; SUPERCOOLED WATER; GLASS-TRANSITION; BOSON PEAK; ANOMALOUS BEHAVIOR; DYNAMIC CROSSOVER; LIGHT-SCATTERING; HEAT-CAPACITY; LIQUID WATER; NEUTRON;
D O I
10.3390/ijms20215373
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The hydrogen density of states (DOS) in confined water has been probed by inelastic neutron scattering spectra in a wide range of its P-T phase diagram. The liquid-liquid transition and the dynamical crossover from the fragile (super-Arrhenius) to strong (Arrhenius) glass forming behavior have been studied, by taking into account the system polymorphism in both the liquid and amorphous solid phases. The interest is focused in the low energy region of the DOS (E < 10 meV) and the data are discussed in terms of the energy landscape (local minima of the potential energy) approach. In this latest research, we consider a unit scale energy (EC) linked to the water local order governed by the hydrogen bonding (HB). All the measured spectra, scaled according to such energy, evidence a universal power law behavior with different exponents gamma) in the strong and fragile glass forming regions, respectively. In the first case, the DOS data obey the Debye squared-frequency law, whereas, in the second one, we obtain a value predicted in terms of the mode-coupling theory (MCT) gamma similar or equal to 1.6).
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Electron scattering and ionization of H2O; OH, H2O2, HO2 radicals and (H2O)2 dimer
    Joshipura, Kamalnayan N.
    Pandya, Siddharth H.
    Mason, Nigel J.
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (04)
  • [32] H-Bond Network in Amino Acid Cocrystals with H2O or H2O2. The DFT Study of Serine-H2O and Serine-H2O2
    Vener, Mikhail V.
    Medvedev, Alexander G.
    Churakov, Andrei V.
    Prikhodchenko, Petr V.
    Tripol'skaya, Tatiana A.
    Lev, Ovadia
    JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (46) : 13657 - 13663
  • [33] Temperature dependence of structure and density for D2O confined in MCM-41-S
    Kamitakahara, William A.
    Faraone, Antonio
    Liu, Kao-Hsiang
    Mou, Chung-Yuan
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (06)
  • [34] (H2O)10 and (H2O)12 on a virtual metal surface:: The growth of ice
    Henschel, Henning
    Kraemer, Tobias
    Lankau, Timm
    LANGMUIR, 2006, 22 (26) : 10942 - 10950
  • [35] From strong van der Waals complexes to hydrogen bonding: From CO•••H2O to CS•••H2O and SiO•••H2O complexes
    Zhang, Yan
    Hollman, David S.
    Schaeffer, Henry F., III
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (24)
  • [36] DFT study of the interactions of H2O, O2 and H2O + O2 with TiO2 (101) surface
    Du, Zheng
    Zhao, Cuihua
    Chen, Jianhua
    Zhang, Dongyun
    COMPUTATIONAL MATERIALS SCIENCE, 2017, 136 : 173 - 180
  • [37] Ultrafast Chemistry of Water Radical Cation, H2O•+, in Aqueous Solutions
    Ma, Jun
    Wang, Furong
    Mostafavi, Mehran
    MOLECULES, 2018, 23 (02):
  • [38] Density Functional Theory Study of Intermolecular Interaction between RDX and H2O
    Zeng, Xiu-Lin
    Ju, Xue-Hai
    ADVANCED ENGINEERING MATERIALS III, PTS 1-3, 2013, 750-752 : 1848 - +
  • [39] Density Function Theory Study on Adsorption and Dissociation of H2O on Pd Nanowire
    Lin, Ken-Huang
    Ju, Shin-Pon
    Chen, Hui-Lung
    Chen, Hsin-Tsung
    Weng, Meng-Hsiung
    Lin, Jenn-Sen
    Hsieh, Jin-Yuan
    Yang, Hsi-Wen
    Huang, Wen-Cheng
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (02) : 813 - 818
  • [40] A Dynamic Proton Bond: MH+?H2O? M?H3O+Interconversion in Loosely Coordinated Environments
    Martinez-Haya, Bruno
    Aviles-Moreno, Juan Ramon
    Gamez, Francisco
    Martens, Jonathan
    Oomens, Jos
    Berden, Giel
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (05) : 1294 - 1300